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Abstract—Principal component analysis (PCA) is a key tool
in the field of data dimensionality reduction. Various methods
have been proposed to extend PCA to the union of subspace
(UoS) setting for clustering data that come from multiple
subspaces like K-Subspaces (KSS). However, some applications
involve heterogeneous data that vary in quality due to noise
characteristics associated with each data sample. Heteroscedastic
methods aim to deal with such mixed data quality. This paper
develops a heteroscedastic-focused subspace clustering method,
named ALPCAHUS, that can estimate the sample-wise noise
variances and use this information to improve the estimate of
the subspace bases associated with the low-rank structure of
the data. This clustering algorithm builds on K-Subspaces (KSS)
principles by extending the recently proposed heteroscedastic PCA
method, named LR-ALPCAH, for clusters with heteroscedastic
noise in the UoS setting. Simulations and real-data experiments
show the effectiveness of accounting for data heteroscedasticity
compared to existing clustering algorithms. Code available at
https://github.com/javiersc1/ALPCAHUS.

Index Terms—Heteroscedastic data, heterogeneous data quality,
subspace bases estimation, subspace clustering, union of subspace
model, unsupervised learning.

I. INTRODUCTION

Many modern data science problems require learning an
approximate signal subspace basis for some collection of data.
This is important for downstream tasks involving subspace
basis coefficients such as classification [1], regression [2],
and compression [3]. Besides subspace learning, one may
be interested in clustering data points that originate from
multiple subspaces. Formally, subspace clustering, or union
of subspace (UoS) modeling, is an unsupervised machine
learning problem where the goal is to cluster unlabeled data
and find the subspaces associated with each data cluster. When
the cluster assignments are known, it is easy to find the
subspaces, and vice versa. This problem becomes nontrivial
when both components must be estimated [4]. This clustering
problem has many applications, such as image segmentation [5],
motion segmentation [6], image compression [7], and system
identification [8].

Some applications involve heterogeneous data samples that
vary in quality due in part to noise characteristics associated
with each sample. Some examples of heteroscedastic datasets
include environmental air quality data [9], astronomical spectral
data [10], and biological sequencing data [11]. In heteroscedas-
tic settings, the noisier data samples can significantly corrupt
the basis estimates [12]. In turn, this corruption can worsen

Fig. 1: Two 1D subspaces, colored blue and yellow, with data
consisting of two noise groups shown with circle and triangle
marker types.

clustering performance. Popular clustering methods such as
Sparse Subspace Clustering (SSC) [13], K-Subspaces (KSS)
[14], and Subspace Clustering via Thresholding (TSC) [15]
implicitly assume that data quality is consistent. For example,
in SSC, the method relies on the self-expressiveness property
of data that requires using other samples to estimate similarity.
From our experiments, we found that this implicit data quality
assumption can degrade clustering quality for heteroscedastic
data.

Because of these limitations, we developed a subspace
clustering algorithm, inspired from KSS principles, that explic-
itly models noise variance terms, without assuming that data
quality is known. The method adaptively clusters data while
learning noise characteristics. See Fig. 1 for a visualization
where Ensemble KSS (EKSS) [16] returns poor subspace bases
estimates whereas our method found more accurate subspace
bases and improved clustering quality.

We extend our previous work [17] by generalizing the
LR-ALPCAH formulation to the UoS setting for clustering
heteroscedastic data. The proposed approach achieved ∼3 times
lower clustering error than existing methods, and it achieved
relatively low clustering error even when very few high quality
samples are available. The paper is divided into a few key
sections. Section II introduces the heteroscedastic problem for-
mulation for subspace clustering. Section III discusses related
work in subspace clustering and reviews the heteroscedastic
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subspace algorithm LR-ALPCAH. Section IV introduces the
proposed subspace clustering method named ALPCAHUS.
Section V covers synthetic and real data experiments that
illustrate the effectiveness of modeling heteroscedasticity in a
clustering context. Sec. VI discusses some limitations of our
method and possible extensions.

II. PROBLEM FORMULATION

Let K denote the number of subspaces that is either known
beforehand or estimated using other methods. Before describing
the general union of subspace model, we consider the single
subspace model when K = 1.

A. Single-Subspace Model (K = 1)

Let yi ∈ RD denote the data samples for index i ∈
{1, . . . , N}, where D denotes the ambient dimension. Let
xi represent the low-dimensional data sample generated by
xi = Uzi where U ∈ RD×d is an unknown basis for a
subspace of dimension d and zi ∈ Rd are the corresponding
basis coordinates. Then the heteroscedastic model we consider
is

yi = xi + ϵi where ϵi ∼ N (0, νiI) (1)

assuming Gaussian noise with variance νi, where I denotes
the D ×D identity matrix. We consider two cases: one where
each data sample may have its own noise variance, and one
where the case where there are G groups of data having shared
noise variance terms {ν1, . . . , νG}. Sec. III-B discusses an
optimization problem based on this model that estimates the
heterogeneous noise variances {νi} and the subspace basis U .

B. Union of Subspaces Model (K ≥ 1)

Let Y =
[
y1 . . . yN

]
∈ RD×N denote a matrix whose

columns consist of all N data points yi ∈ RD. We generalize
(1) to model the data with a union of subspaces model as
follows

yi = xi + ϵi

xi = Uki
zi for some ki ∈ {1, . . . ,K}, (2)

where Uk ∈ RD×dk is a subspace basis that has subspace
dimension dk. Here zi ∈ Rdk denotes the basis coefficients
associated with xi, and ϵi ∈ RD denotes noise for that point
drawn from ϵi ∼ N (0, νiI).

If the subspace bases were known, then one would like to
find the associated subspace label ci ∈ {1, . . . ,K} for each
data sample by solving the following optimization problem

ci = argmin
k

∥yi −UkU
T
k yi∥22, ∀yi ∈ Y . (3)

This label describes the subspace association of a data point
yi that has the lowest residual between the original sample and
its reconstructed value given the subspace model. In general, the
goal is to estimate all of the subspace bases U = (U1, . . . ,UK)
and cluster assignments C = (c1, . . . , cN ) that describe the
subspace labels of all points.

III. RELATED WORKS

A. Subspace Clustering

Many subspace clustering algorithms fall into a general
umbrella of categories such as algebraic methods [18], iterative
methods [19], statistical methods [20], and spectral clustering
methods [21] [22]. In recent years, both spectral clustering-
based methods and iterative methods have become popular.

1) Spectral Clustering: Many methods build on spectral
clustering. This method is often used for clustering nodes in
graphs. Spectral clustering aims to find the minimum cost
“cuts” in the graph to partition nodes into clusters. Given some
collection of data points, one way to construct a graph is
to assume that “nearby” data samples are highly connected
in the graph. Thus, it is possible to construct a graph from
data samples, with various levels of connectedness, by using
some metric to assign affinity/similarity for each pair of
points. Let G(V,W ) correspond to a graph that consists of
vertices V = {v1, . . . , vN} and edge weights W ∈ RN×N

such that wij corresponds to some nonnegative weight, or
similarity, between vi and vj . The graph G is assumed to be
undirected, i.e., W = W T . The degree of a node is defined as
di =

∑N
j=1 wij and can be collected to form a degree matrix

such that D = diag(d1, . . . , dN ). Let A1, . . . ,AK form a K-
partition on G(V,W ) and cut(A,B) =

∑
i∈A,j∈B wij . Then,

spectral clustering aims to solve the following optimization
problem:

argmin
A1,...,AK

1

2

K∑
i=1

cut(Ai, Āi)

|Ai|
(4)

where Āi is all vertices not belonging in Ai and |Ai| is the
number of vertices belonging to the ith partition. Instead of
working with W directly, one computes a normalized graph
Laplacian such as L = I −D−1W to make the influence
of heavy degree nodes more similar to low degree nodes.
Collecting the indicator values

hij ≜

{
1/
√
|Aj | if vi ∈ Aj

0 otherwise

into a matrix H ∈ RN×K , one can rewrite (4) as

1

2

K∑
i=1

cut(Ai, Āi)

|Ai|
=

K∑
i=1

(HTLH)ii = Tr(HTLH), (5)

where Tr(H) =
∑

i Hii denotes the trace of a matrix.
The indicator vectors are discrete, which makes the problem
computationally challenging. One way to relax the problem is
to allow arbitrary real values for H and instead solve

Ĥ = argmin
H∈RN×K

Tr(HTLH) s.t. HTH = I. (6)

Trace minimization problems with semi-unitary constraints
are well-studied in the literature, and it is easy to see that
Ĥ consists of the first K eigenvectors of L assuming that
λ1(L) ≤ . . . ≤ λN (L) where λi(L) denotes the ith eigenvalue
of L. Once Ĥ is computed, the K-means algorithm is applied
to ĤT , treating each row of Ĥ as the spectral embedding
of the associated vi vertex. We now describe three subspace
clustering methods that use this technique by first forming a
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weight matrix W and then applying the spectral clustering
method.

2) Self-Expressive Methods: Self-expressive methods exploit
the “self-expressiveness property” [23] of data that hypothesizes
that a single data point can be expressed as a linear combination
of other data points in its cluster, which is trivially true if the
data exactly follows a subspace model. The goal is to learn
those linear coefficients and which is often achieved by adopting
different regularizers in the formulation. These self-expressive
algorithms, e.g., SSC [13] and LRSC [24], learn the coefficient
matrix P ∈ RN×N by solving special cases of the following
general optimization problem

argmin
P

f(Y − Y P ) + λR(P ) s.t. P ∈ SP . (7)

The function f(Y − Y P ) is a data fidelity term, R(P ) is a
regularizer, and SP is some constrained set to encourage P to
satisfy certain conditions. In the case of SSC the optimization
problem is

argmin
P

∥Y − Y P ∥2F + λ∥P ∥1,1 s.t. Pii = 0 ∀i (8)

where ∥·∥1,1 = ∥vec(·)∥1 is the vectorized 1-norm and ∥·∥F is
the Frobenius norm of a matrix. Observe that (8) approximates
each data sample as a sparse linear combination of other
data points to form P . Let abs(P ) represent the element-
wise absolute value of matrix P . Then, spectral clustering is
performed on W = 1

2 (abs(P T ) + abs(P )) by applying the
K-means method to the spectral embedding of the affinity
matrix W . Ideally, (8) would select the high quality data to
represent worse samples in P and this information would be
retained in W . However, this data quality awareness condition
is not guaranteed in self-expressive methods to our knowledge.
In our experiments, Fig. 2f and Fig. 6 show that there must
be an issue constructing an ideal P due to poor clustering
performance in heteroscedastic conditions.

3) Subspace Clustering via Thresholding (TSC): In the
example to follow, assume that there exists two unique 1-
dimensional subspaces. Given two data samples yi and yj ,
intuitively their dot product ⟨yi,yj⟩ will be high if ci = cj
meaning they belong to the same subspace. Likewise, if ci ̸= cj ,
then ⟨yi,yj⟩ = 0 assuming orthogonal subspaces. In non-
orthogonal scenarios, ⟨yi,yj⟩ will be relatively small since
ci ̸= cj as compared to ci = cj . Using this idea, in more
general D-dimensional subspace settings, TSC constructs a
matrix Z ∈ RN×N such that

Zij = exp(−2 arccos(|⟨yi,yj⟩|)) s.t. Zii = 0 ∀i. (9)

This matrix is then thresholded to retain only the top q values
for each row, i.e.,

W = argmin
W

∥W −Z∥2F s.t. ∥Wi,:∥0 = q ∀i (10)

where ∥Wi,:∥0 = q is the l0 pseudo-norm. In other words, one
constructs Wi,: using the q nearest neighbors that correspond
to the highest magnitude values. Then, spectral clustering is
applied to W to find the subspace clustering associations.

4) Ensemble K-Subspaces (EKSS): Iterative methods are
based on the idea of alternating between cluster assignments
and subspace basis approximation, with KSS being highly
prominent [25]. The KSS algorithm seeks to solve the following
optimization problem:

argmin
C,U

K∑
k=1

∑
ci=k,∀i

∥yi −UkU
T
k yi∥22. (11)

The goal is to minimize the sum of residual norms by
alternating between performing PCA on each cluster to update
U and using the subspace bases to calculate new cluster
assignments C in a similar fashion to the K-means algorithm.

The quality of the solution depends highly on the initial-
ization. Recent work provides convergence guarantees and
spectral initialization schemes that provably perform better
than random initialization [26]. However, this problem (11), as
shown in [27], is NP-hard. Further, it is prone to local minima
[28]. To overcome this, consensus clustering [29] is a tool that
leverages information from many trials and combines results
together. This approach, known as Ensemble KSS (EKSS) [16]
in this context, creates an affinity matrix whose (i, j)th entry
represents the number of times the two points were clustered
together in a trial. Then, spectral clustering is performed on
the affinity matrix to get the final clustering from the many
base clusterings. The use of PCA makes it challenging to learn
clusters and subspace bases in the heteroscedastic regime since
PCA implicitly assumes the same noise variance across all
samples [30]. The proposed ALPCAHUS approach in Sec. IV
builds on KSS, and its ensemble version, by generalizing (11)
to the heteroscedastic regime.

B. Single Subspace Heteroscedastic PCA Method

Before extending (11) to the heteroscedastic setting, we
review how LR-ALPCAH [17] solves for a single subspace
(K = 1) in the heteroscedastic setting using the model
described in (1). For the measurement model yi ∼ N (xi, νiI)
in (1), the probability density function for a single data sample
yi is

1√
(2π)D|νiI|

exp [−1

2
(yi − xi)

′(νiI)
−1(yi − xi)]. (12)

After further manipulation, the negative log-likelihood is
expressed in matrix notation as

1

2
∥(Y −X)Π−1/2∥2F +

D

2
log |Π|. (13)

To reduce computation and enforce a low-rank solution, LR-
ALPCAH [17] took inspiration from the matrix factorization
literature [31] and factorized X ∈ RD×N ≈ LR′ where
L ∈ RD×d̂ and R ∈ RN×d̂ for some rank estimate d̂. Using
this idea, LR-ALPCAH estimates X by solving for L and R
in the following optimization problem

argmin
L,R,Π

1

2
∥(Y −LR′)Π−1/2∥2F +

D

2
log |Π|. (14)

The next section, Sec. IV, combines ideas from (11) and (14)
to tackle the general union of subspaces setting (K > 1).
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C. Other heteroscedastic models

This paper focuses on heteroscedastic noise across the
data samples. There are other subspace learning methods
in the literature that explore heteroscedasticity in different
ways. For example, HeteroPCA considers heteroscedasticity
across the feature space [32]. One possible application of
that model is for data that consists of sensor information
with multiple devices that naturally have different levels of
precision and signal to noise ratio (SNR). Another heterogeneity
model considers the noise to be homoscedastic and instead
assumes that the signal itself is heteroscedastic [33]. That work
considers clustering applications where the power fluctuating
(i.e., heteroscedastic) signals are embedded in white Gaussian
noise. We exclude comparisons with those methods since their
models are very different. These different models each have
their own applications.

IV. PROPOSED SUBSPACE CLUSTERING METHOD

For notational simplicity, let Yk ≜ YCk
∈ RD×Nk denote the

submatrix of Y having columns corresponding to data samples
that are estimated to belong in the kth subspaces, i.e., YCk

=
matrix({yi : ci = k}). We apply this notation similarly to
other matrices such as Πk ≜ ΠCk

= diag({νi : ci = k}). For
the union of subspace measurement model (2), we generalize
LR-ALPCAH (14) with the following optimization problem

argmin
L,R,Π, C

K∑
k=1

1

2

∥∥∥(Yk −LkR
T
k )Π

−1/2
k

∥∥∥2
F
+

D

2
log |Πk| (15)

where C,Π,L,R denote the sets of estimated clusters, noise
variances, and factorized matrices respectively for each cluster
k = 1, . . . ,K. Specifically L ≜ {L1, . . . ,LK}, R ≜
{R1, . . . ,RK}. Our algorithm for solving (15) is called
ALPCAHUS (ALPCAH for Union of Subspaces). Similar to
KSS, we alternate between updating subspace bases given
cluster estimates and updating cluster estimates by projection
given subspace bases estimates. We solve (15) using alternating
minimization between

argmin
Lk,Rk,Πk

1

2

∥∥∥(Yk −LkR
T
k )Π

−1/2
k

∥∥∥2
F
+

D

2
log |Πk|,∀k

(16)

and

ci = argmin
k

∥yi −UkU
T
k yi∥22, i = 1, . . . , N. (17)

The solution to (16) is described in [17], with convergence
theory. For completeness, we include the updates here. For the

(i + 1) iteration, given current (i)th iterates, the updates are
given as

L
(i+1)
k = argmin

Lk

f(Lk,R
(i)
k ,Π

(i)
k )

= YkΠ
(i)
k R

(i)
k (R

(i)T

k Π
(i)
k R

(i)
k )−1 (18)

R
(i+1)
k = argmin

Rk

f(L
(i)
k ,Rk,Π

(i)
k )

= Y T
k L

(i)
k (L

(i)T

k L
(i)
k )−1 (19)

Π
(i+1)
k = argmin

Πk

f(L
(i)
k ,R

(i)
k ,Πk) =⇒

eTj Π
(i+1)
k ej = |Ck|−1∥(Yk −L

(i)
k R

(i)T

k )ej∥22, ∀j, (20)

where ej denotes the jth standard canonical basis vector
that is used to select the jth column of some matrix. To
further improve clustering performance, we leverage consensus
clustering over many trials. Initially, we tried using this
approach with only one trial as seen in Fig. 2b and ALPCAHUS
(B = 1) result in Fig. 6a. However, since K-subspaces in
general is sensitive to initialization, we found great success
in using a consensus approach with more than one trials as
shown in Fig. 2d and ALPCAHUS (B = 16) result in Fig. 6a.

A. Ensemble Extension for ALPCAHUS

We now present the ensemble algorithm with base clustering
parameter B to combine multiple trials of finding C in (15).
Any B > 1 leverages consensus clustering by forming an
affinity matrix W ∈ RN×N where

Wi,j =
1

B

∣∣∣{∀b ∈ {1, . . . , B} : yi,yj co-clustered in C(b)}
∣∣∣

(21)
and C(b) = {c(b)1 , . . . , c

(b)
N } refers to the cluster labels for the

bth trial ranging from 1 to B. Then, the rows and columns of
W are thresholded to retain the top q values by solving

Zrow = argmin
Z

∥W −Z∥2F s.t. ∥Wi,:∥0 = q ∀i (22)

Zcol = argmin
Z

∥W −Z∥2F s.t. ∥W:,i∥0 = q ∀i. (23)

Finally, spectral clustering is applied to 1
2 (Z

col + Zrow) to
get the clusters from the results of the ensemble. One could
select the base clusterings parameter B = 1 to reduce to
one trial of the optimization problem (15). Alg. ALPCAHUS
summarizes the procedure for subpace clustering with optional
ensemble learning; for Julia code implementations see https:
//github.com/javiersc1/ALPCAHUS.

B. Rank Estimation

In subspace clustering, some algorithms like SSC do not
require subspace dimension to be known or estimated, whereas
others like KSS require this. For the group of algorithms that
require this parameter to be estimated, there is great interest
in adaptive methods that can learn the subspace dimension. In
recent work, [26] proposes using an eigengap heuristic on the
sample covariance matrix of each cluster, i.e., Sk = 1

|Ck|YkY
T
k ,

to estimate dimension. This means calculating the following

d̂k = argmax
i

|λi(Sk)− λi+1(Sk)| (24)

https://github.com/javiersc1/ALPCAHUS
https://github.com/javiersc1/ALPCAHUS
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Algorithm ALPCAHUS (unknown noise variances, unknown noise grouping)

Input: Y ∈ RD×N : data, K ∈ Z+: number of subspaces, {d̂k ∈ Z+ ∀k ∈ {1, . . . ,K}}: candidate dimension for all clusters,
q ∈ Z+: threshold parameter, B ∈ Z+: number of base clusterings, I ∈ Z+: number of ALPCAH iterations, T ∈ Z+: number
of alternating updates
Output: C = {c1, . . . , cK}: clusters of Y
for b = 1, . . . , B (in parallel) do
Ck ∼ {1, . . . , N} s.t. |Ck| ≈ N

K̄
for k = 1, . . . ,K Initialize clusters randomly without replacement

for k = 1, . . . ,K (in parallel) do
Lk,Rk,νk ← LR-ALPCAH(Yk, d̂k, I)
Π−1

k ← Diagonal({ν−1 : ν ∈ νk}) Initialize L,R matrices and form noise variance matrix
end for
for t = 1, . . . , T (in sequence) do

for k = 1, . . . ,K (in parallel) do
Lk,Rk,νk ← LR-ALPCAH(Yk, d̂k, I)
Π−1

k ← Diagonal({ν−1 : ν ∈ νk}) Update current subspace basis estimates
end for
Ck ← {y ∈ Y : ∀j ∥LkL

†
ky∥2 ≥ ∥LjL

†
jy∥2} for k = 1, . . . ,K Update current cluster estimates by projection

end for
C(b) ← Ck = {c1, . . . , cN} Collect results from all trials

end for
Wi,j ← 1

B

∣∣{∀b : yi,yj are co-clustered in C(b)}
∣∣ for i, j = 1, . . . , N Form affinity matrix of similar clusterings

for i = 1, . . . , N (in parallel) do
Zrow

i,: ←Wi,: with the smallest N − q entries set to zero. Threshold rows of affinity matrix
Zcol

:,i ←W:,i with the smallest N − q entries set to zero. Threshold columns of affinity matrix
end for
W ← 1

2

(
Zrow +Zcol

)
Average affinity matrix

C ← SPECTRALCLUSTERING(W ,K) Final clustering

where λi(Sk) denotes the ith eigenvalue of Sk assuming λ1 ≥
. . . ≥ λD. For heteroscedastic data, the eigengap heuristic
can break down, making it challenging to determine rank,
as shown in Sec. V, Fig. 5. In recent work, [34] develops a
parallel analysis algorithm to estimate the rank of a matrix
that is consistently shown to work well in the heteroscedastic
regime if the data comes from one subspace only. It works by
creating an i.i.d. Bernoulli (p = 0.5) matrix denoted as M and
analyzing the singular values of M⊙Y for a matrix of interest
Y . One can distinguish what singular values are associated
with the signal and noise component of the data through this
process. We generalize this line of work and apply it to the
union of subspace setting by starting off over-parameterized
and adaptively shrinking subspace bases as follows:

∀k ∈ {1, . . . ,K} do

σ̃(r) = SingularValues(M ⊙ Yk) ∀r ∈ {1, . . . , R} (25)

d̂k = smallest d that satisfies

σd+1(Yk) ≤ α-percentile of {σ̃(1)
d+1, . . . , σ̃

(R)
d+1}. (26)

This is done for each estimated cluster Yk over R random
trials where 1 ≤ R≪ T . Here σd+1(Yk) denotes the d+ 1th
singular value of Yk. We repeat this process for all cluster
subsets {Y1, . . . ,YK} after the cluster reassignment update
in (17). To reduce computation, we perform this dimension
estimate sparingly every 10% of ALPCAHUS iterations.

C. Cluster Initialization

For the non-ensemble version of ALPCAHUS (B = 1),
it previously remained to be seen whether there exists an
initialization scheme that performs better in expectation than
random cluster assignment in the heteroscedastic regime.
In recent work, [26] proposes a thresholding inner-product
based spectral initialization method (TIPS), designed for
homoscedastic data to be used with KSS, where an affinity
matrix is generated by

Wij = 1 if |⟨yi,yj⟩| ≥ τ and i ̸= j (27)

given a thresholding parameter τ > 0 and zero otherwise.
Then, the cluster assignments C = {c1, . . . , cN} are calculated
by applying the spectral clustering method on W . Recall that
yi = xi + ϵi. Upon closer analysis, this metric (ignoring
absolute value), in expectation gives

E[⟨yi,yj⟩] = E[⟨xi,xj⟩] + E[⟨xi, ϵj⟩]
+ E[⟨ϵi,xj⟩] + E[⟨ϵi, ϵj⟩] = E[⟨xi,xj⟩]. (28)

Therefore, the metric is independent of the noise variances,
meaning the affinity matrix constructed does not have highly
unbalanced, asymmetric edge weights from noisy samples.
Thus this metric is more robust to heteroscedastic noise than
others such as Euclidean norm where

E[∥yi − yj∥22] = ∥xi − xj∥22 +D(νi + νj). (29)

Clearly, this is inflated by the noise terms νi and νj . To note,
TIPS initialization is only useful when B = 1 for one base
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clustering since it is a deterministic initialization; it provably
performs better than random initialization as illustrated in
Fig. 4. Otherwise, random initialization is used when B > 1
to leverage consensus information in the ensemble process.

D. ALPCAHUS Convergence

ALPCAHUS with a single cluster (K = 1) provably
converges to local minima since the cost function simplifies to
LR-ALPCAH (14) which has convergence guarantees shown
in [17, Thm. 2]. In the multi-cluster setting (K > 1), one can
guarantee convergence with respect to the cost function in (15)
by ensuring two things: 1) that the noise variances are kept
above some small threshold value and 2) having a stopping
criteria defined as follows. Let the stopping criteria consist of
the following cases: 1) if new assignment for yi has a new
label ci = k that lowers the cost objective then accept new
label, and 2) if yi has current label ci = k1 but the cluster
assignment problem (17) has equal cost to some other ci = k2
then retain the current label k1 regardless. The argument is a
natural extension of the original k-subspaces formulation [25,
Thm. 7]. We formally state this result in Thm. 1. We provide
an experimental result in the appendix, Fig. 9, to validate this
theorem.

Theorem 1. The ALPCAHUS formulation (15) has a sequence
of cost function values that converges to some minimum value
with cluster assignments being locally optimal assuming a noise
variance lower bound parameter α ∈ R > 0 that lower bounds
all νi and stopping criteria that rejects repeated assignments
of points yi and corresponding labels ci as described earlier.

Proof. We follow with a proof by contradiction, assume that
there is no local convergence of cost function values, i.e., the
sequence of cost function values diverges. There are at most
NK ways to partition the N data points into K clusters (finite
possible assignments). One of two scenarios arise, either a) the
C(t+1) cluster assignment at the (t+1) iteration will be the same
as C(t), or b) the new assignment C(t+1) will be different. If
scenario a) occurs, then the cost function value will not change
meaning the sequence of cost function values has converged.
Thus, a contradiction has occurred. The remainder of the proof
will focus on scenario b). Let Y

(t)
k ,L

(t)
k ,R

(t)
k ,Π

(t)
k be the

optimization variables that produce the cost below

cost(t) =
∑
k

1

2
∥(Yk − LkR

T
k )Π

−1/2
k ∥2F +

D

2
log |Πk|. (30)

Note that the cost function value is lower bounded by
DN log (α)/2. Because of scenario b), it follows that a new
clustering C(t+1) ̸= C(t) is produced by solving

ci = argmin
k

∥yi −UkU
T
k yi∥22 (31)

for all data points. Under this setting, there is some yi with
label c(t+1)

i ̸= c
(t)
i . Due to the stopping criteria, this is only

possible if (31) achieved a lower value, meaning the point is
actually closer (in an L2 residual sense) to the c

(t+1)
i cluster

than c
(t)
i . However, this implies that cost(t+1) < cost(t). This

is because ∥(Yk − LkR
T
k )Π

−1/2
k ∥2F in (30) measures the

weighted residual, or sum of squares, for all points that belong
in the kth cluster. Recall that a low-rank approximation exists
Xk ≜ LkR

T
k for Yk and Uk = LkL

†
k is used in (31). However,

Xk = UkU
T
k Yk so solving (31) leads to a lower value in

(30) since ∥(Yk −LkR
T
k )Π

−1/2
k ∥2F measures the same thing

(ignoring the weight). Therefore, a contradiction is achieved if
scenario b) occurs. From scenario a) and b), it follows that the
cost function value (30) does not diverge. Instead, due to finite
possibilities of the N points being assigned to the K total
clusters, stopping criteria that rejects repeated assignments, a
non-increasing cost function that is bounded below, it follows
that the ALPCAHUS cost function (30) has a sequence of
cost function values that will converge to a local minima with
cluster assignments being locally optimal.

V. EXPERIMENTS

A. Synthetic Experiments

1) Experimental Setup: We generated a synthetic dataset
consisting of K = 2 clusters each of dimension d = 3 derived
from random subspaces in D = 100 dimensional ambient
space. Each cluster consisted of two data groups with group
1 containing N1 = 6 samples, to explore the data constrained
regime, with noise variance ν1 = 0.1 per cluster. For group 2,
we varied the N2 samples and noise variance ν2. We performed
cross validation for hyperparameters in any algorithms that
require it with a separate training set. We used the estimated
clusters from each clustering algorithm and the known clusters
to calculate clustering error using the Hungarian algorithm
[35] to deal with the problem of label permutations. More
concretely, clustering error is defined as

clustering error =
100

N
(1−max

π

∑
i,j

Qout
π(ij)Q

true
ij ) (32)

where π is a permutation of cluster labels, and Qout and Qtrue

are output labels and ground truth labelings of the data where
the (i, j)th entry is one if point j belongs to cluster i and zero
otherwise.

We tried different values of noise variances and data samples
and computed average clustering error out of 100 trials. Each
trial had different noise, basis coefficients, and subspace
basis realizations for the clusters. We compared various sub-
space clustering algorithms such as K-Subspaces (KSS) [14],
Ensemble K-Subspaces (EKSS) [16], Subspace Clustering
via Thresholding (TSC) [36], and Doubly Stochastic Sparse
Subspace Clustering (ADSSC) [37]. Applying general non-
subspace clustering methods such as K-means [38] resulted in
poor clustering error so results of these methods are generally
not shown.

2) Clustering Error: Table 2h shows the clustering quality
of these algorithms for synthetic heteroscedastic data. Fig. 2
complements Table 2h by exploring the complete heteroscedas-
tic landscape with a visual representation that is easier to
understand. We define a method called “noisy oracle” where
an oracle uses the true cluster assignments to apply PCA on
the low noise data only per each cluster. Using these subspace
basis estimates of each cluster, the oracle performs cluster
assignments using (17). This oracle reference provides a kind
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(a) KSS (TIPS) mean clustering error. (b) ALPCAHUS (B = 1, TIPS) mean clustering error.

(c) EKSS (B=128) mean clustering error. (d) ALPCAHUS (B=128) mean clustering error.

(e) TSC mean clustering error. (f) ADSSC mean clustering error.

(g) Noisy oracle mean clustering error.

ν2/ν1 1 1 300 300 150 225 76
N2/N1 1 50 1 50 26 13 38

Reference Level
Noisy Oracle 0.0 0.0 11.0 27.0 15.8 21.2 7.9

Method Comparisons
KSS 26.6 19.9 37.8 45.6 38.9 44.4 24.8

EKSS
(B = 128) 0.2 0.0 31.6 42.4 25.7 40.4 8.0

ADSSC 0.3 0.0 22.7 42.2 31.7 38.6 10.6
TSC 37.1 0.0 43.8 43.5 28.5 38.2 9.9

ALPCAHUS
(B = 1) 25.8 16.7 35.1 37.8 31.9 35.3 18.5

ALPCAHUS
(B = 128) 0.0 0.0 26.4 27.8 16.1 22.7 7.8

(h) Clustering error (%) results for heteroscedastic landscape.
Visual results included in Fig. 2. Columns consist of the 4 corners
and the 3 diagonal elements of the heatmaps in Fig. 2.

Fig. 2: Clustering error over the heteroscedastic landscape for various subspace clustering algorithms.
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Fig. 3: Percentage difference (%) of ALPCAHUS clustering
error subtracted from EKSS while good data amount varies.

Fig. 4: Clustering error (%) for TIPS initialization scheme vs.
random initialization for the ALPCAHUS method (B = 1).

of lower bound on realistic clustering performance since it can
approximate subspace bases separately given the true labeling.

ALPCAHUS (B = 1) with TIPS initialization achieved
lower clustering error than KSS with TIPS initialization.
For the ensemble methods (B > 1), both EKSS and
ALPCAHUS significantly improved. However, EKSS still
had higher clustering error in more heteroscedastic regions.
Meanwhile, ALPCAHUS remained very close to the noisy
oracle, indicating it more accurately estimated the underlying
true labeling. Compared to other methods like TSC and ADSSC,
ALPCAHUS generally outperformed them with one exception
for ADSSC (N2 = 1, ν2/ν1 = 300). Here, ADSSC performed
better than ALPCAHUS when the number of noisy points
is roughly equal to the number of good points. Overall,
the ensemble version of ALPCAHUS was generally more
robust against heteroscedasticity compared to other subspace
clustering algorithms. To summarize, we explored the effects of
data quality and data quantity on the heteroscedastic subspace
clustering estimates in different situations. To our knowledge,
this is the first systematic analysis of heteroscedasticity effects
on subspace clustering quality in the literature.

3) Effects of Good Data: Additionally, we explored the
effects of good data quantity on the subspace clustering problem
to understand at what point it becomes advantageous to use
ALPCAHUS over KSS methods. We fixed ν1 = 0.1, N2 = 500
and vary N1, ν2. We report the percentage difference of EKSS
clustering error (%) - ALPCAHUS clustering error (%), i.e.,
errorEKSS − errorALPCAHUS, meaning higher values indicate our

Fig. 5: Adaptive rank estimation using eigengap heuristic and
proposed FlipPA approach (true rank d = 6).

method is better. Figure 3 shows that ALPCAHUS performed
better than EKSS even up to N1 = 160 which represents about
33% of the total data. ALPCAHUS never performed worse than
EKSS but the advantage gap narrowed as N1 increased. Thus,
there is a wide range of conditions for which ALPCAHUS is
preferable to homoscedastic methods.

4) Clustering Initialization: Section IV proposed using the
TIPS initialization scheme in this heteroscedastic context since
the dot product metric used in constructing the affinity matrix
in (28) is provably robust to heteroscedastic noise. We fixed
points groups N1, N2 and varied ν2 while keeping ν1 = 0.1.
We included the noisy oracle to establish a realistic performance
baseline. Figure 4 shows that TIPS initialization ALPCAHUS
(B = 1) outperformed random initialization for the non-
ensemble ALPCAHUS method (B = 1) across the entire
heteroscedastic landscape. Thus, TIPS should always be used
for the non-ensemble methods for clustering quality. We did
not include the ensemble version of ALPCAHUS (B > 1)
because the ensemble process inherently takes advantage of
random initialization to achieve a different labeling each trial.

5) Rank Estimation of Clusters: In Sec. IV, we proposed
to use random sign flipping to adaptively find and shrink the
subspace dimension of clusters when subspace dimension is
unknown. For Fig. 5 we synthetically generated subspaces with
true rank d = 6 and explored how the initial rank parameter
affects the ability to estimate the true rank over 100 trials. We
compared this approach against the eigengap heuristic by using
ALPCAHUS with both adaptive rank schemes and report the
estimated rank values from the final clustering. The eigengap
approach consistently underestimated the rank regardless of the
initial value, except when given the true rank value d = 6. Our
sign flipping approach provided much better rank estimates
with much smaller variances between trials.

B. Real Data Experiments

1) Quasar Flux Data: We investigated quasar spectra data
from the Sloan Digital Sky Survey (SDSS) Data Release 16 [39]
using its DR16Q quasar catalog [40]. Each quasar has a vector
of flux measurements across wavelengths that describes the
intensity of observing that particular wavelength. In this dataset,
the noise is heteroscedastic across the sample space (quasars)
and feature space (wavelength), but we focused on a subset of
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(B = 16)(B = 1)(B = 16)

(a) Subspace clustering results for various methods.

(B = 16) (B = 16)(B = 1)

(b) Average subspace affinity error results for various methods.

Fig. 6: Experimental results of quasar flux data for subspace clustering and learning. Methods involving a single run, i.e., KSS
and ALPCAHUS (B = 1), use the TIPS initialization scheme.

Methods
Time
(ms)

Memory
(MiB)

Mean
Subspace

Error

Mean
Clustering
Error (%)

KSS 149.3 53.0 0.80 38.5
EKSS (B=16) 181.4 212.6 0.62 23.8
ADSSC 125.7 17.5 0.62 21.1
TSC 32.3 16.5 0.40 18.2
ALPCAHUS (B=1) 148.5 126.7 0.43 14.4
ALPCAHUS (B=16) 210.7 678.2 0.28 6.3

TABLE I: Subspace clustering results on quasar flux data. The
KSS and ALPCAHUS (B = 1) methods use TIPS initialization.

data that is homoscedastic across wavelengths and heteroscedas-
tic across quasars. The noise for each quasar is known given the
measurement devices used for data collection [39]. In Fig. 7, a
subset of the spectra data is shown for illustrative purposes to
compare the visual differences in data quality. We preprocessed
the data (filtering, interpolation, centering, and normalization)
based on the supplementary material of [41]. We form clusters
in these experiments by considering quasars with different
properties, namely, two quasar groups (K = 2) with different
redshift values (z1 = 1.0− 1.1, z2 = 2.0− 2.1). Additionally,
for the second group, we queried for broad absorption lines
(BAL) type quasars. Since we downloaded the data using
separate queries, we know which points belong to which cluster
group, meaning we can compute clustering error for comparison
purposes. We isolated a training set (5000 samples total) to
learn any model parameters and used the rest (5000 samples
total) for a test dataset. We formed trials by randomly selecting
400 quasar spectra samples per group and performed 50 total
trials to report clustering error. For rank estimation, we used the
noisy oracle approach and found that there is no improvement
to clustering quality for rank values greater than d̂ = 3, so we
used this value for any applicable algorithms.

Figure 6a shows clustering error for this quasar spectra
multi-cluster data. The ensemble version of ALPCAHUS was
very close in clustering quality to the noisy oracle, suggesting
that it accurately learned the subspace bases while clustering
the data groups. The non-ensemble version of ALPCAHUS
(B = 1) had large variances in clustering error, indicating
some challenges in getting close to the optimal cost function
minima with this data. However, based on median values, it

Fig. 7: Sample data matrix of quasar flux measurements across
wavelengths for each (column-wise) sample.

still managed to get a lower error than KSS, ADSSC, and TSC.
Additionally, Fig. 6b shows the average subspace affinity error
of these methods after applying LR-ALPCAH to the clusterings
for all methods. ALPCAHUS better learned the subspace bases
than the other methods when B = 16, which was chosen as
the smallest value that had small run-to-run variances while
not taking significantly longer to compute. Both of these
results show the benefit of developing heteroscedastic specific
algorithms in the subspace clustering context. Table I reports
median time complexity and memory requirements along with
mean clustering error and mean subspace error. In this data
instance, the ensemble method gets close in time to the non-
ensemble methods due to our multi-threaded implementation.
Yet, because of the multi-threaded implementation, the memory
requirements are larger for the ensemble method as opposed to
the non-ensemble method. Overall, relative to other clustering
methods, ALPCAHUS is competitive time-wise at the cost of
increased memory requirements.

2) Indian Pines Data: Additionally, we investigated hyper-
spectral image (HSI) segmentation data called Indian Pines
[42]. This image of size 145 × 145 contains D = 200
reflectance bands for each pixel that is around the 0.4−2.5µm
wavelength. HSI data is known to be very noisy due to thermal
effects, atmospheric effects, and camera electronics, leading
to works that study per-pixel noise estimation in hyperspectral
imaging [43]. In total, there are K = 16 classes composed of
alfalfa, corn, grass, wheat, soybean, and others. There is one
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(a) Ground truth labels for Indian Pines dataset. NC means no
class available (background).

(b) K-means results with clustering error = 77% and mIOU =
16%.

(c) EKSS (B = 32, T = 3, q = K) results with clustering error
= 64% and mIOU = 27%.

(d) ALPCAHUS (B = 32, T = 3, q = K) results with clustering
error = 53% and mIOU = 31%.

Fig. 8: Experimental results of Indian Pines data for subspace clustering.

additional class (background) that is withheld from clustering
as commonly done [33]. Therefore, N = 10, 249 instead of
N = 145× 145. In other works, researchers have found that
d̂ = 5 is an appropriate rank parameter since it covers 95%
of the cumulative variance [33]. A subset of the data matrix
Y ∈ R200×10249 is split into 2, 500 samples to learn model
parameters. From this, the learned subspaces are applied on
Y to cluster all data so that the heatmaps can be compared
against the ground truth. The ground truth image is found in
Fig. 8a. For perspective, randomly guessing would lead to 94%
clustering error due to K = 16 clusters. For consistency, the
Hungarian algorithm is again applied to the clustering results
to make it easier to compare against the ground truth image.

We compare against K-means in Fig. 8b to illustrate the
difficulty of the problem. ALPCAHUS results are shown in
Fig. 8d next to EKSS results in Fig. 8c. Clustering error is
reported for these algorithms along with mean IOU to measure
the similarity between the images. ALPCAHUS achieved the
lowest clustering error and highest mIOU (53% / 31%) relative
to the other approaches such as K-means (77% / 16%) and
EKSS (64% / 27%). We note that our ALPCAHUS results
are similar to [33] even though, in that work, they instead
treat the noise as homoscedastic and instead model the signal
as heteroscedastic. Further, the EKSS results on this dataset
are similar to the homoscedastic PCA approach used in [33].
This indicates some utility in modeling heteroscedasticity in

hyperspectral images. Yet, the reflectance bands themselves
also appear to be heteroscedastic with some bands being noisier
than others [44]. Thus, developing a method that is doubly
heteroscedastic with respect to both the samples and features
is an interesting direction of future work.

For reference, the SOTA result is about 10% misclassification
rate in a classification setting (i.e., not clustering) [45]. In a
clustering setting, recent works such as [46] have achieved a
40% clustering error which is 13% lower than our results.
We do not claim SOTA results with HSI data, only that
heteroscedastic union of subspace modeling improved results
over homoscedastic union of subspace modeling in finding
reflectance band groups with similar characteristics.

VI. CONCLUSION

This paper proposed ALPCAHUS, a subspace clustering
algorithm that can find subspace data clusters whose points
contain heteroscedastic noise. For future work, a union of
manifolds generalization could possibly be useful. For example,
Alzheimer’s disease patients often have different resting state
functional MRI activations than cognitively normal individuals
[47], so one could consider these different classes to belong
to different manifolds in the ambient space. Previous research
has shown manifold learning to more correctly model temporal
dynamics than subspace modeling in this domain [48]. Another
direction of future work could be to consider heteroscedasticity
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across the feature space. For example, one might be interested
in biological sequencing of different species with similar genes
where the gene marker counts naturally follow heteroscedastic
distributions [49]. These generalizations are nontrivial so it is
left for future work. While our implementation of ALPCAHUS
benefited from parallelization, it needed more computation time
and memory than TSC. Because of this, there is an opportunity
to further optimize our code base to remove certain matrix
multiplication operations and instead use single vector dot
products to reduce memory. Furthermore, since our subspace
basis step requires an SVD computation for an initial low-rank
estimate, we could use the Krylov-based Lanczos algorithm
[50] to further reduce time and memory for each trial leading
to more significant improvements in memory usage and time.
Overall, ALPCAHUS was more robust towards heteroscedastic
noise than other clustering methods, making it easier to identify
correct clusterings under this kind of noise model.
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VIII. APPENDIX

A. ALPCAHUS Convergence Experiment

Fig. 9: ALPCAHUS (B = 1) cost function value convergence
plot following Thm. 1. Astronomy spectra data from Fig. 6a
used. For convenience, upper and lower bounds of cost function
values are provided by using random subspaces and estimated
LR-ALPCAH subspaces (oracle approach) respectively.

This section focuses on providing empirical verification
of our ALPCAHUS convergence theorem in Thm. 1. We
implement the noise variance lower bound parameter α to
bound noise variance estimation and stopping criteria that
rejects repeated assignments of points. The quasar spectra flux
data from SDSS (DR16Q catalog) is used in this experiment.
For simplicity, only one base trial (B = 1) is run to include
results from the randomly initialized ensemble ALPCAHUS
method (generally when B > 1) and the TIPS initialized

ALPCAHUS (generally when B = 1). In Fig. 9, the cost
function value over iterations is plotted for the ALPCAHUS
method. Upper and lower bound cost function values are
provided by 1) using random initialized subspaces as the “true”
subspaces and 2) estimated subspaces by LR-ALPCAH (oracle
approach) respectively. As can be observed, ALPCAHUS
converges relatively quickly with only a few iterations. We
note that in this implementation the stopping criteria does not
terminate the algorithm, only rejects the assignments from
changing. Hence, ALPCAHUS is run for a fixed 10 iterations
even though convergence is achieved earlier for both versions.
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