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Preface

Presentation:
• Latex Typst is my new best friend
• My presentation: https://typst.app/project/ruQq-xBrGHMHYNQxrlfEEN

Myself:
• Research with others¹ on Alzheimer’s disease in fMRI earlier this year
• Taking EECS542 (Adv. Topics in CV) so class project is on ADD in sMRI

Some info:
• 50 million people affected (2020) [1]
• This is a hard problem due to many factors…

¹Co-PIs: Scott Peltier & Zhongming Liu

https://typst.app/project/ruQq-xBrGHMHYNQxrlfEEN


Background²

Figure 1: sMRI and fMRI scans (left/right) on CN and AD subjects (left/right).

²Figure adapted from [2]



Modern Vision Architectures

2017 2020 2023

𝛽-VAE [3]
Self-Supervision
“Nonlinear PCA”

Vision Transformers [4]
Self-attention based
≪ inductive bias
MLP-Mixer [5]
Only FC layers
Make MLPs great again!

Diffusion Models

ConvNeXt v2³ [6]
CNN-based
Updated ResNet

³I implement v2 but will only discuss v1, don’t worry about it



𝛽-VAE⁴

𝑍 = 𝑍𝜇 + 𝑍𝜎 ⊙ 𝜀, 𝜀〜𝒩(0, 1)

⁴Figure from [7]



𝛽-VAE II

𝑋 = data, 𝑍 = latent variables
𝑃𝜑(𝑍 | 𝑋) = encoder, 𝑃𝜃(𝑋̂ | 𝑍) = decoder

ℒ(⋅) = 𝔼𝑃𝜑(𝑍 | 𝑋)[log(𝑃𝜃(𝑋̂ | 𝑍))]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
data fidelity (reconstruction)

− 𝛽𝐷𝐾𝐿

(
((
((𝑃𝜑(𝑍 | 𝑋) ‖

𝒩(0,1)

⏞𝑝(𝑍)

)
))
))

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
 "Disentanglement" term 



Vision Transformers

What are vision transformers?

Well if we ask chatGPT, we get the following:



Vision Transformers

What are vision transformers?

Well if we ask chatGPT, we get the following:

Just kidding!



Transformers I - Word Embedding

Let us tokenize⁵ the following sentence: “Javier ate an apple”

Javier → 12
ate → 38
an → 5
apple → 27

D = Dictionary Length
𝑑𝑘 = Embedding Dim.

M = nn.Embed(D, d_k)
(
((
((
((

⟵ M(12, :) ⟶
⟵ M(38, :) ⟶
⟵ M(5, :) ⟶
⟵ M(27, :) ⟶)

))
))
))

sequence of tokens

⁵Simpliest scheme is per word tokens but in practice “Huffman coding” is used here



Transformers II - Positional Encoding

Transformers are not RNNs! They don’t really understand positions.

(
((
((
((

⟵ M(12, :) ⟶
⟵ M(38, :) ⟶
⟵ M(5, :) ⟶
⟵ M(27, :) ⟶)

))
))
))

𝑇  = Token matrix
Positional encoding matrix



Transformers III - Attention⁶

Attention(𝑄, 𝐾, 𝑉 ) =
Softmax(𝑄𝐾𝑇 ÷ √𝑑𝑘)𝑉

⁶Figure from [8]. Note that this is self-attention, cross-attention is also useful.



Transformers III - Attention⁷

Attention(𝑄, 𝐾, 𝑉 ) =
Softmax(𝑄𝐾𝑇 ÷ √𝑑𝑘)𝑉

𝑇  = “Javier ate an apple”
𝑊𝑄, 𝑊𝐾 , 𝑊𝑉  = learnable params.
→ 𝑄, 𝐾, 𝑉 = 𝑊𝑄𝑇 , 𝑊𝐾𝑇 , 𝑊𝑉 𝑇

⁷Figure from [8]. Note that this is self-attention, cross-attention is also useful.



Transformers III - Attention⁸

Attention(𝑄, 𝐾, 𝑉 ) =
Softmax(𝑄𝐾𝑇 ÷ √𝑑𝑘)𝑉

𝑇  = “Javier ate an apple”
𝑊𝑄, 𝑊𝐾 , 𝑊𝑉  = learnable params.
→ 𝑄, 𝐾, 𝑉 = 𝑊𝑄𝑇 , 𝑊𝐾𝑇 , 𝑊𝑉 𝑇

𝑄𝐾𝑇  = affinity matrix
𝑠𝑚(𝑄𝐾𝑇 )𝑉  = new embedding

⁸Figure from [8]. Note that this is self-attention, cross-attention is also useful.



Transformers IV - Multi-Head Self-Attention

MultiHead(𝑄, 𝐾, 𝑉 ) =
Concat(head_1,..., head_3) 𝑊𝑂

Jeff/Javier/...

⏞head_i =
Attention(𝑄𝑊 𝑖

𝑄, 𝐾𝑊 𝑖
𝐾 , 𝑉 𝑊 𝑖

𝑉 )



Vision Transformers I



Vision Transformers II - Patch Embedding

1 def __init__():  Pytorch
2   project = nn.Conv2d(C, d_k, kernel=1, stride=patch_size)
3 def forward(input):
4   o = project(input) # (d_k, Patch_x, Patch_y)
5   o = o.flatten(2).transpose(1, 2) # (Num_patches_total, d_k)



MLP-Mixer



Mixer Layers

“Mixing” spatial information + channels

MLP → [Linear, GELU, Linear]



ConvNeXt



ConvNeXt



Model Comparisons

Given some input 𝑋,

Convolution:

𝐾 ∗ 𝑋 =
ℱ(𝐾)⏟
weights

⊙ ℱ(𝑋)

MLP:

𝑊⏟
weights

𝑋

Transformer:

Sm(𝑄𝐾𝑇 )⏟⏟⏟⏟⏟
weights

𝑋

• Very different philosophies, yet very familiar
• Varying levels of inductive biases
• Unclear which approach works best given data



Moving on to Alzheimer stuff…



Datasets

Alzheimer’s Disease Neuroimaging Initiative (ADNI):
• Develop biomarkers and advance understanding of pathophysiology
• Improve diagnostic methods for AD and improve clinical trial design
• Data: MRI, PET, genetics, cognitive tests, CSF, and blood biomarkers

Posible additional data sources:
• AIBL (sMRI/fMRI)
• OASIS (sMRI/fMRI)
• MADC (sMRI/fMRI - michigan data)
• HCP (sMRI/fMRI - healthy patients only!)

Dealing with real data is pain 🙁



Data Preprocessing

SubjectHealthy?Create pseudo subjectsfrom date sessionsBIDSconversion(fmriprep [9])N4 bias correctionMerge volumesSkull strippingSpatial normalizationUniquely split dataper subject80/20 splitJavier-QC©YesNo



Data Distribution

Class
total (train/test)

Subjects Sessions
CN 711 (568/143) 711 (568/143)

EMCI⁹ 326 (260/66) 1814 (1414/401)
MCI 388 (310/78) 928 (760/168)

LMCI¹⁰ 177 (141/36) 933 (743/190)
DAT 276 (220/56) 756 (612/144)

⁹This class only exists for ADNI Phase 2 / GO, overlap with MCI
¹⁰Same as above



Data Processing / Augmentation¹¹
1 training_transform = tio.Compose([  Pytorch
2   tio.ToCanonical(), 
3   tio.Resample(2),
4   tio.CropOrPad((96, 108, 96)),
5   tio.RescaleIntensity(out_min_max=(-1, 1)), 
6   tio.OneOf({ 
7       tio.RandomAffine(scales=0.1, degrees=5): 1, 
8       tio.RandomMotion(degrees=5, translation=5): 1, 
9       tio.RandomNoise(std=0.05): 1, }),      ])

¹¹TorchIO[10] library used for loading, preprocessing, augmentation of medical images



Training setup

Data:
model(sMRI ∈ ℝ𝐵×1×96×108×96) ⟶ unnormalized logits ∈ ℝ𝐵× num_classes

Optimizer:
AdamW = Adam + Weight Decay
Cost function¹²:
P: true distribution, Q: model distribution

𝐻(𝑃 , 𝑄)⏟
Cross Entropy

= 𝐻(𝑃)⏟
Entropy

+ 𝐷𝐾𝐿(𝑃 ‖ 𝑄)⏟⏟⏟⏟⏟
KL divergence

= − ∑
𝑥∈ classes

𝑃(𝑥) log 𝑄(𝑥)

¹²I use weighted CE to handle class imbalances by using inverse frequencies as weights



Experiments¹³
• Model size

‣ ConvNeXt ~30M vs. ~80M
• Spatial resolution

‣ 1mm (∼ 2003) vs. (∼ 1003)
• 5-class classification
• Binary vs. 3-class classification
• Transfer learning
• Feature Maps
• VAE results

¹³Blue text indicates discussion, no additional slides



ConvNeXt - Binary Classification

precision  recall  f1-score

CN       
0.79      0.83      0.81     

DAT       
0.85      0.81      0.83      

accuracy 0.82  



ConvNeXt - Multi-Class Classification I

precision  recall  f1-score   

CN       
0.52      0.69      0.60   

MCI       
0.53      0.44      0.48    

DAT       
0.67      0.61      0.64       

accuracy 0.57      



ConvNeXt - Transfer Learning

Can we use features from other problems to increase accuracy?¹⁴

¹⁴MedMNIST [11] contains 2D/3D medical data for classification from many modalities



Results

Model Precision Recall AccuracyCN DAT CN DAT
ConvNeXt 0.79 0.85 0.83 0.81 0.82
ViT (p=8) 0.79 0.76 0.69 0.84 0.77

MLP-Mixer (p=3) 0.87 0.82 0.76 0.90 0.84
VAE (Self-Supervised) 0.67 0.80 0.80 0.66 0.73

Table 1: Binary Classification Results

Model Precision Recall AccuracyCN MCI DAT CN MCI DAT
ConvNeXt 0.52 0.53 0.67 0.69 0.44 0.61 0.57
ViT (p=8) 0.59 0.42 0.55 0.49 0.37 0.69 0.52

MLP-Mixer (p=3) 0.73 0.45 0.64 0.68 0.53 0.57 0.59
VAE (Self-Supervised) 0.47 0.45 0.57 0.64 0.40 0.46 0.49

Table 2: Three-Class Classification Results



ConvNeXt - Feature Maps / Visualization¹⁵

¹⁵Grad-CAM++ method [12] used for saliency map generation



Future Work

sMRI

fMRI

Vision
Model

BOLD
Unroll¹⁶ SSM¹⁷

Classifier

3D

4D

1D

2D
1D

¹⁶(my own notation) Generate BOLD matrix w/ PE for sequence modeling
¹⁷More on this in the fall



Conclusion

Javier’s sMRI scan¹⁸

¹⁸Thanks to Luis Hernandez-Garcia and David Frey for the scan 😀



Conclusion

→ model → [cn: 0.99…, mci: 10−4, ad: 10−6] thanks for listening!
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