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\ In this work we present DREAM, an fMRI-to-image
method for reconstructing viewed images from brain activi-

- | ties, grounded on fundamental knowledge of the human vi-
sual system. We craft reverse pathways that emulate the hi-

erarchical and parallel nature of how humans perceive the

visual world. These tailored pathways are specialized to

- - decipher semantics, color, and depth cues from fMRI data,

fMRI recordings.
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NDo Dataset
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Dataset

- Natural Scenes Dataset (NDS) contains 8 subjects viewed images for 40 hours

- Each image was shown for 3 seconds and repeated three times over 30-40 sessions

. ~22k-30k functional MRI response trials for the ~8k images

- Images are from COCO dataset so captions are included with images

- Only 982 images common among subjects (9823 TMRI| sessions)

- BME Details: 1.8mm voxel size, 7T scanner, gradient echo, EPI, 1.6sec TR
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Method Overview

Forward Pathways (stimuli to fMRI)
= I
X)) E H

Visual stimuli Brain Activities fMRI voxels

. Connections between retina and brain can be
broken into two pathways

High-Level Semantics

Visual Cortex

- Midget cells / Parvo responsible for color info

Color
> | - Parasol cells / magno responsible for motion and
arvocellular |
Fatway L Depth depth iNfo
Magnocellular |
ParvosA = Pathway
@etina

agno

Human Visual System



Method Overview

Forward Pathways (stimuli to fMRI)
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« Visual cortex ROIs: V1 V2, V3 hV4 VO, PHC,

MTMST LO, IPS as seen below
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Method Overview

Forward Pathways (stimuli to fMRI) Reverse Pathways (fMRI to Semantics, Color and Depth to Image)
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Method Overview

Forward Pathways (stimuli to fMRI) Reverse Pathways (fMRI to Semantics, Color and Depth to Image)
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PKM Block - Depth & Color
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RPKIM B

Reverse PKM
Pathway

Depth D

Color é

ock - Depth & Color

first train an encoder to map RGBD to their corresponding
fMRI data. To compensate for the absence of depth in fMRI

datasets, we use[34] as sur-
rogate ground-truth depth. The encoder i1s trained with a
convex combination of mean square error and cosine prox-
1mity between the input r and its predicted counterpart 7:

Ly (r,7) = - MSE(r,7) — (1 — f) cos(£(r, 7)), (5)

where [ is determined empirically as a hyperparameter.

data mapping
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RPKM B.

Reverse PKM
Pathway
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K - Depth & Color

Stage 2. Similar to stage 1, we now train the decoder with
pairs {(r,d)} in a supervised manner:

Ls(d,d) = ||d —d||s + T (d), (6)

where d = D(r) and the total variation regularization 7 (d)
encourages spatial smoothness in the reconstructed d.

data mapping
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Reverse PKM
Pathway
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RPKM Block - Depth & Color

RGBD

Stage 3. To address the scarcity of fMRI data and improve
the model generalization to unseen categories, we employ a
self-supervised strategy to finetune the decoder while keep-
ing the encoder frozen. This facilitate the usage of any
natural 1mages (e.g., from ImageNet [9] or LAION [36])
along with their estimated depth maps

data mapping
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RPKM Block - Inference
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Method Overview

Forward Pathways (stimuli to fMRI) Reverse Pathways (fMRI to Semantics, Color and Depth to Image)
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T2I-Adapter: Learning Adapters to Dig out More Controllable Ability for
. Text-to-Image Diffusion Models
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121 Adapter
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We utilize Stable Diffusion (SD) [35] to reconstruct
the final image from the predicted CLIP embedding S
and the additional guidance from predicted color palette C
and depth map D. Such guidance is produced using the
color adapter R. and the depth adapter R4 within T2I-

adapter [29]. This process 1s formulated as follows:
Fr =w.R. (é) + wiaR g (]5) ,

] A (7)

I =SD(z,Fg,S),

where z 1s a random noise, w. and wy are adjustable weights
to control the relative significance of the adapters.
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Results
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Figure 6. Sample Visual Decoding Results from the SOTA Methods on NSD.



Ablation Studies

Test Ground-truth (D, C) Predictions (D, C) DREAM DREAM w/o Color Guidance
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My tTwo cents



Controversy’

5.1. Experimental Setting

Dataset. We use the Natural Scenes Dataset (NSD) [2]
in all experiments, which follows the standard practices 1n
the field [15,24,27,32,37,41]. NSD, as the largest fMRI
dataset, records brain responses from eight human subjects
successively 1solated in an MRI machine and passively ob-
served a wide range of visual stimuli, namely, natural 1m-
ages sourced from MS-COCO [25], which allows retriev-
ing the associated captions. In practice, because brain ac-
tivity patterns highly vary across subjects [18],
What?121 The standardized splits contain
982 fMRI test samples and 24,980 fMRI training samples.
Please refer to the supplementary material for more details.



controversy?

5.1. Experimental Setting

Dataset. We use the Natural Scenes Dataset (NSD) [2]
in all experiments, which follows the standard practices 1n
the field [15,24,27,32,37,41]. NSD, as the largest fMRI
dataset, records brain responses from eight human subjects
successively 1solated in an MRI machine and passively ob-
served a wide range of visual stimuli, namely, natural 1m-
ages sourced from MS-COCO [25], which allows retriev-
ing the associated captions. In practice, because brain ac-
tivity patterns highly vary across subjects [1 %], a separate
model 1s trained per subject. The standardized splits contain

Please refer to the supplementary material for more details.

| imagine there is high correlation between these two, no class withholding?



Discussion/Conclusion

- What do BME people think about this work?
- What other criticisms are there with this method?
- Are general population-based methods feasible? (No subject specific models)

. |s this approach a glorified classitier?

Thanks for listening :)



