DREAM: Visual Decoding from REversing HumAn Visual SysteM Paper Review

Javier Salazar Cavazos - Feb 11, 2025

fMRI-to-image method

The Premise

Abstract

In this work we present DREAM, an fMRI-to-image method for reconstructing viewed images from brain activities, grounded on fundamental knowledge of the human visual system. We craft reverse pathways that emulate the hierarchical and parallel nature of how humans perceive the visual world. These tailored pathways are specialized to decipher semantics, color, and depth cues from fMRI data, mirroring the forward pathways from visual stimuli to fMRI recordings.

Related Works From our group

Variational autoencoder: An unsupervised model for encoding and decoding fMRI activity in visual cortex

Kuan Han^{b,c}, Haiguang Wen^{b,c}, Junxing Shi^{b,c}, Kun-Han Lu^{b,c}, Yizhen Zhang^{b,c}, Di Fu^{b,c}, Zhongming Liu^{a, b, c,*}

^a Weldon School of Biomedical Engineering, USA

^b School of Electrical and Computer Engineering, USA

^c Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47906, USA

Related Works (VAE Results)

Dataset

NDS Dataset

Days

Dataset

- Natural Scenes Dataset (NDS) contains 8 subjects viewed images for 40 hours
- Each image was shown for 3 seconds and repeated three times over 30-40 sessions
- ~22k-30k functional MRI response trials for the ~8k images
- Images are from COCO dataset so captions are included with images
- Only 982 images common among subjects (982*3 fMRI sessions)
- BME Details: 1.8mm voxel size, 7T scanner, gradient echo, EPI, 1.6sec TR

Method

Forward Pathways (stimuli to fMRI)

Visual stimuli

Brain Activities

fMRI voxels

- Connections between reting and brain can be broken into two pathways
- Midget cells / Parvo responsible for color info
- Parasol cells / magno responsible for motion and depth info

Forward Pathways (stimuli to fMRI)

Visual stimuli

Brain Activities

fMRI voxels

• Visual cortex ROIs: V1, V2, V3, hV4, VO, PHC, MT, MST, LO, IPS as seen below

Cortex: Functional anatomy

1. RVAC Block -> Semantics

fMRI embedding

2. RPKM Block - Depth & Color

RGBD

data mapping

RPKM Block - Depth & Color

RGBD

Stage 1. Given limited pairs $\{(r, d)\}=\{\text{fMRI}, \text{RGBD}\}$, we first train an encoder to map RGBD to their corresponding fMRI data. To compensate for the absence of depth in fMRI datasets, we use MiDaS-estimated depth maps [34] as surrogate ground-truth depth. The encoder is trained with a convex combination of mean square error and cosine proximity between the input r and its predicted counterpart \hat{r} :

 $\mathcal{L}_r(r,\hat{r}) = \beta \cdot \mathrm{MSE}(r)$

where β is determined empirically as a hyperparameter.

stage 1

stage 2

stage 3 ${\cal D}$

$$r,\hat{r}) - (1-\beta)\cos(\angle(r,\hat{r})), \quad (5)$$

data mapping

RPKM Block - Depth & Color

Stage 2. Similar to stage 1, we now train the decoder with pairs $\{(r, d)\}$ in a supervised manner:

$$\mathcal{L}_s(d$$

$$\hat{d}) = \|d - \hat{d}\|_1 + \mathcal{J}(\hat{d}),$$
 (6)

where $\hat{d} = \mathcal{D}(r)$ and the total variation regularization $\mathcal{J}(\hat{d})$ encourages spatial smoothness in the reconstructed d.

RPKM Block - Depth & Color

Stage 3. To address the scarcity of fMRI data and improve the model generalization to unseen categories, we employ a self-supervised strategy to finetune the decoder while keeping the encoder frozen. This facilitate the usage of any natural images (*e.g.*, from ImageNet [9] or LAION [36]) along with their estimated depth maps

data mapping

RPKM Block - Inference

data mapping

3. T2I Adapter

"A doll in the shape of letter 'A' "

"Two girls"

"Two fluffy rabbit ears"

T2I-Adapter: Learning Adapters to Dig out More Controllable Ability for **Text-to-Image Diffusion Models**

Chong Mou^{*1,2} Xintao Wang^{†2} Liangbin Xie^{*2,3,4} Yanze Wu² Jian Zhang^{†1} Zhongang Qi² Ying Shan² Xiaohu Qie²

¹Peking University Shenzhen Graduate School ²ARC Lab, Tencent PCG ³University of Macau ⁴Shenzhen Institute of Advanced Technology https://github.com/TencentARC/T2I-Adapter

"A cool man in the room"

"A magic world, bright stars in sky"

"A skier, high quality"

T2I Adapter

Diffusion

where z is a random noise, ω_c and ω_d are adjustable weights to control the relative significance of the adapters.

We utilize Stable Diffusion (SD) [35] to reconstruct the final image from the predicted CLIP embedding \hat{S} and the additional guidance from predicted color palette \hat{C} and depth map \hat{D} . Such guidance is produced using the color adapter \mathcal{R}_c and the depth adapter \mathcal{R}_d within T2Iadapter [29]. This process is formulated as follows:

$$\begin{split} \mathbf{F}_{\mathcal{R}} &= \omega_c \mathcal{R}_c \left(\hat{\mathbf{C}} \right) + \omega_d \mathcal{R}_d \left(\hat{\mathbf{D}} \right), \\ \hat{I} &= \mathbf{SD} \left(z, \mathbf{F}_{\mathcal{R}}, \hat{\mathbf{S}} \right), \end{split}$$

Results

Results

Figure 6. Sample Visual Decoding Results from the SOTA Methods on NSD.

Ablation Studies

Test

Ground-truth (D, C)

Predictions (\hat{D}, \hat{C})

DREAM

DREAM w/o Color Guidance

My two cents

Controversy?

5.1. Experimental Setting

What?!?!

Dataset. We use the Natural Scenes Dataset (NSD) [2] in all experiments, which follows the standard practices in the field [15, 24, 27, 32, 37, 41]. NSD, as the largest fMRI dataset, records brain responses from eight human subjects successively isolated in an MRI machine and passively observed a wide range of visual stimuli, namely, natural images sourced from MS-COCO [25], which allows retrieving the associated captions. In practice, because brain activity patterns highly vary across subjects [18], a separate model is trained per subject. The standardized splits contain 982 fMRI test samples and 24,980 fMRI training samples. Please refer to the supplementary material for more details.

Controversy?

5.1. Experimental Setting

I imagine there is high correlation between these two, no class withholding?

Dataset. We use the Natural Scenes Dataset (NSD) [2] in all experiments, which follows the standard practices in the field [15, 24, 27, 32, 37, 41]. NSD, as the largest fMRI dataset, records brain responses from eight human subjects successively isolated in an MRI machine and passively observed a wide range of visual stimuli, namely, natural images sourced from MS-COCO [25], which allows retrieving the associated captions. In practice, because brain activity patterns highly vary across subjects [18], a separate model is trained per subject. The standardized splits contain 982 fMRI test samples and 24,980 fMRI training samples. Please refer to the supplementary material for more details.

Discussion/Conclusion

- What do BME people think about this work?
- What other criticisms are there with this method?
- Are general population-based methods feasible? (No subject specific models)
- Is this approach a glorified classifier?

Thanks for listening :)