Heteroscedastic PCA (HPCA)

Javier Salazar Cavazos

Joint collaboration with Laura Balzano & Jeff Fessler

University of Michigan January, 2023

Applications

Lesion Detection [1]

Motion Estimation [3]

Dynamic MRI Reconstruction [2]

Image/Video Denoising [4]

Heteroscedasticity

 $x_i = Uz_i$ where \hat{U} = estimated subspace basis, z_i = basis coordinates

M WN2023 Quals

Basis Approximation Methods							
SVD/PCA		HePPCAT					
Probabilistic PCA (PPCA)	Weighted PCA	HeteroPCA					
Robust PCA (RPCA)							
Homoscedastic Methods	Heteroscedastic PCA						
	(HPCA)						
Heteroscedastic Methods	Our Contribution						
Heteroscedastic Methods (Variance Unknown)							

Robust PCA (RPCA)

Key Idea

Robust PCA = PCA + Outlier Robustness

Let $\textbf{\textit{Y}} = [\textbf{\textit{y}}_1, ..., \textbf{\textit{y}}_n] \in \mathbb{R}^{D imes N}$ be a data matrix

Solve the following optimization problem:

$$\underset{L,S}{\operatorname{arg\,min}} \underbrace{\lambda_r \|L\|_*}_{\text{low rank}} + \underbrace{\|S\|_{1,1}}_{\text{outliers}} \quad \text{s.t.} \quad Y = L + S \text{ where } \|L\|_* = \sum_{i=1}^{\min(M,N)} \sigma_i(L)$$

Model Limitations

Image Courtesy: Oh et. al. [5]

M WN2023 Quals

Heteroscedastic PCA (HPCA)

Decompose Y such that (Y) = (X)

Key Idea

HPCA = Robust PCA (RPCA) + Heteroscedastic Noise

Let
$$Y = [\mathbf{y}_1, ..., \mathbf{y}_n] \in \mathbb{R}^{D imes N}$$
 and $\Pi = \mathsf{diagm}(
u_1, \ldots,
u_n) \in \mathbb{R}^{N imes N}$

data matrix Then the optimization problem we posed is the following:

$$\underset{X,Z,\Pi}{\operatorname{arg\,min}} \underbrace{\lambda_r \|X\|_{\circledast,\alpha}}_{\operatorname{low\,rank}} + \underbrace{\frac{1}{2} \|Z\Pi^{-1/2}\|_F^2}_{\operatorname{weighted\,noise}} + \underbrace{\frac{D}{2} \log \Pi}_{\operatorname{unk.\,variance}} \operatorname{s.t.} Y = X + Z$$

low rank data

+ Z

noise matrix

Heteroscedastic PCA (HPCA)

Let
$$Y = [\mathbf{y}_1, ..., \mathbf{y}_n] \in \mathbb{R}^{D \times N}$$
 and $\Pi = \text{diagm}(\nu_1, ..., \nu_n) \in \mathbb{R}^{N \times N}$

$$\underset{X,Z,\Pi}{\operatorname{arg\,min}} \underbrace{\lambda_r \| X \|_{\circledast,\alpha}}_{\operatorname{low\,rank}} + \underbrace{\frac{1}{2} \| Z \Pi^{-1/2} \|_F^2}_{\operatorname{weighted noise}} + \underbrace{\frac{D}{2} \log \Pi}_{\operatorname{unk.\,variance}} \quad \text{s.t.} \quad Y = X + Z$$
$$\| X \|_{\circledast,\alpha} \stackrel{\min(M,N)}{\triangleq} \sum_{i=\alpha+1}^{\min(M,N)} \sigma_i(X) = \sum_{i=1}^{\min(M,N)} \sigma_i(X) - \sum_{i=1}^{\alpha} \sigma_i(X) = \| X \|_* - \| X \|_{\operatorname{Ky-Fan}(\alpha)}$$

Note!

 $\alpha = 0 \implies ||X||_{\oplus,\alpha} = ||X||_*$ (convex assuming known variance) $\alpha > 0, \lambda_r \to \infty \implies \hat{X} \implies SVP(X, \alpha) = U_{\alpha} \Sigma_{\alpha} V_{\alpha}^T$ (nonconvex)

M WN2023 Quals

Experimental Setup

1 Define $W \in \mathbb{R}^{D \times N}$ to be a random Uniform matrix $(w_{ij} \sim U[0, 1])$

2 Knowing that $SVD(W) = U\Sigma V^T$, get $U_{\alpha} = U[:, 1 : \alpha]$ for known $\alpha < D$

3 Let
$$z_i \sim U[-a, a]$$
 or $z_i \sim \mathcal{N}(0, a^2)$ such that $x_i = U_{\alpha} z_i \, \forall i$

4 Then,
$$\forall i \ \mathbf{y}_i = \mathbf{x}_i + \boldsymbol{\epsilon}_i$$
 where $\boldsymbol{\epsilon}_i \sim \mathcal{N}(0, \nu_i)$

6 Collect all y_i such that $Y = [y_1, \dots, y_n]$ and $\Pi = \text{diagm}(\nu_1, \dots, \nu_n)$

6 Run opt. problem to find \hat{X} and do $\text{SVD}(\hat{X}) \implies \hat{U}$ Measure subspace affinity error $\|U_{\alpha}U'_{\alpha} - \hat{U}\hat{U'}\|_F / \|U_{\alpha}U'_{\alpha}\|_F$

Benchmark Comparisons

Probabilistic PCA (PPCA) [homoscedastic]

• Hard rank constraint, assumes same noise variance

Robust PCA (RPCA) [homoscedastic]

• RPCA is excluded from results to prevent straw man argument

Weighted PCA (WPCA) [heteroscedastic]

- Weighted sample covariance method
- Hard rank constraint, assumes known variances

Heteroscedastic Probabilistic PCA Technique (HePPCAT) [hetero.]

- Factor analysis method
- · Hard rank constraint, solves unknown variance case

Planted Model Results (Sample Heteroscedasticity)

known variance case

unknown variance case

ν_1	ν_2	Total Points	Ambient Dimension	Subspace Dimension	Good Samples
0.5	10	500	100	10	10

PCA Comparison

Value
10
100
10
1
100
10

Subspace Affinity Error HPCA/PCA

PCA Comparison (HPCA = All Pts., PCA = Good Pts.)

	20													-0.35
v1=1														-0.30
v2/v1,	40	1												-0.25
e Ratio	60		П											-0.20
ariance	80			e.										-0.15
2														-0.10
	100		20		Poi	40 nt R	atio	N2,	60 /N1,	N1=	10	80	100	
	known variance case													

Subspace Affinity Error HPCA/PCA (good pts. only)

Param.	Value
Subspace Dim.	10
Ambient Dim.	100
Good Samples	10
ν_1	1
Basis Coordinate Range	100
Trials	10

Algorithm Summary

- handles both forms of heteroscedasticity (not shown for brevity)
- no distributional assumptions about the low rank data
- flexible whether rank is known or not
- convex cases when the variances are known
- extends to linear operators (not shown for brevity)
- outperforms current methods like HeteroPCA and HePPCAT*

* at the cost of computation time & learning the regularization parameter

M WN2023 Quals

Heteroscedastic PCA (HPCA)

Future Work I

Fast HPCA (Burer-Monteiro decomposition + balancing preconditioners)

Let $X = UV^T$ where $U \in \mathbb{R}^{D \times k}$ and $V^T \in \mathbb{R}^{k \times N}$ for known rank k

Idea inspired by Yuejie Chi's work on ScaledGD [6]

Conclusion

- Heteroscedasticity is problematic for many algorithms
- Noisy data still contains information about the basis
- Robust PCA works for outliers but fails under heteroscedastic cases
- HPCA builds off Robust PCA for heteroscedastic situations
- Future work on fast implementation & Union of Subspaces (UoS)

Scratch Slide

Heteroscedastic k-Subspaces

$$\min_{\mathcal{C},\mathcal{U}} \sum_{k=1}^{K} \sum_{i:y_i \in c_k} \|y_i - U_k U_k^T y_i\|_2^2$$

 $\mathcal{C} = \{c_1, ..., c_k\} = \text{estimated clusters}, \mathcal{U} = \{U_1, ..., U_K\} = \text{subspace bases}$

Benchmark Comparison Algorithms I

Probabilistic PCA (PPCA)

In factor analysis, the following latent variable model relates observation data *t* to unobserved variable *x*:

$$t = Wx + \mu + \epsilon$$
, where $x \sim \mathcal{N}(0, I), \epsilon \sim \mathcal{N}(0, \sigma^2 I), t \sim \mathcal{N}(\mu, \underbrace{WW^T + \sigma^2 I}_{C})$

Then, for sample covariance matrix S_t , the log-likelihood is:

$$\mathcal{L} = -\frac{N}{2}(d\log(2\pi) + \log(\det(C)) + \operatorname{tr}(C^{-1}S))$$

The subspace basis is found by orthogonalizing *W* via SVD

Benchmark Comparison Algorithms II

Weighted PCA (WPCA)

Given weights w_1, \ldots, w_N for points y_1, \ldots, y_N form the weighted sample covariance matrix as:

$$S = \sum_{i=1}^{N} w_i [y_i y_i']$$

and get subspace basis by performing:

$$\hat{U} = [\hat{u_1}, \dots, \hat{u_k}] = \mathsf{EVD}(S)$$

for given rank k and weights $w_i = \frac{1}{\sigma_i^2}$ (a natural choice)

Benchmark Comparison Algorithms III

Heteroscedastic Probabilistic PCA Technique (HePPCAT)

For $n_1 + \ldots + n_L = n$ data samples from *L* noise groups, the model is described as

$$y_{l,i} = Fz_{l,i} + \epsilon_{l,i}$$
 $i \in \{1, \dots, n_L\}, \ l \in \{1, \dots, L\}$

for scores $z_{l,i} \sim \mathcal{N}(0, v_l I)$ and points $y_{l,i} \sim \mathcal{N}(0, FF^T + v_l I)$

Form the log-likelihood as the following:

$$\mathcal{L}(F, v) = \frac{1}{2} \sum_{l=1}^{L} [n_l \ln \det(FF^T + v_l I)^{-1} - \operatorname{tr}\{Y_l^T (FF^T + v_l I)^{-1} Y_l\}]$$

Feature HPCA

Let $Y = [\mathbf{y}_1, ..., \mathbf{y}_n] \in \mathbb{R}^{D \times N}$ and $W = \text{diagm}(w_1, ..., w_D) \in \mathbb{R}^{D \times D}$

Consider a model with heteroscedasticity across the features

W updates \implies using feature space sample covariance matrix

M WN2023 Quals

Planted Model Results (Feature Heteroscedasticity)

known variance case

unknown variance case

w_1	<i>w</i> ₂	Total Points	Ambient Dimension	Subspace Dimension	Good Features
2	35	500	100	10	50

HPCA Variance Estimation

M WN2023 Quals

HPCA/HePPCAT Distribution Effects

ν_1	ν_2	Total Points	Ambient Dimension	Subspace Dimension	Good Samples
0.5	10	500	100	10	10

HPCA Rank Knowledge

Low Rank Matrix Completion I

Consider a general linear mapping $\mathcal{A}(\cdot) : \mathbb{R}^{D \times N} \to \mathbb{R}^{D \times N}$

Examples

 $\mathcal{A}(X) = M \odot X = \tilde{M}X$ (missing data i.e. matrix completion) $\mathcal{A}(X) = H \circledast X_i \quad \forall i = \tilde{H}X$ (deconvolution e.g. phase retrieval) $\mathcal{A}(X) = FX$ (forward models e.g. MRI encoding matrix)

$\nu_1^{1/2}$	$\nu_2^{1/2}$	Total Samples	Good Samples	Ambient Dimension	Subspace Dimension	Corruption Factor
0.01	0.1	22	1	3584	≈ 4	20%

Low Rank Matrix Completion III

$\nu_1^{1/2}$	$\nu_2^{1/2}$	Total Samples	Good Samples	Ambient Dimension	Subspace Dimension	Corruption Factor
0.01	0.1	22	1	3584	≈ 4	20%

ADMM Implementation I

Form the augmented Lagrangian function with penalty parameter μ :

$$\begin{split} \mathcal{L}_{\mu}(X,Z,\Lambda) &= \lambda_{r} \|X\|_{\circledast,\alpha} + \frac{1}{2} \|Z\Pi^{-1/2}\|_{F}^{2} + \langle \Lambda, Y - X - Z \rangle + \frac{\mu}{2} \|Y - X - Z\|_{F}^{2} \\ &+ \frac{D}{2} \log |\Pi| \end{split}$$

Solve for each primal and dual individually X, Z, Λ, Π

ADMM Implementation II

X update:

$$\begin{aligned} X_{k+1} &= \operatorname*{arg\,min}_{X_k} \mathcal{L}_{\mu}(X_k, Z_k, \Lambda_k) = \operatorname*{arg\,min}_{X_k} \lambda_r \|X_k\|_{\circledast, \alpha} + \frac{\mu}{2} \|Y - X_k - Z_k + \frac{1}{\mu} \Lambda_k\|_F^2 \\ &= \operatorname*{prox}_{\lambda_r \mu^- 1} (Y - Z_k + \frac{1}{\mu} \Lambda_k) = \mathsf{PSSV}(Y - Z_k + \frac{1}{\mu} \Lambda_k, \frac{\lambda_r}{\mu}) \end{aligned}$$

PSSV - Notation

$$\begin{aligned} \mathsf{PSSV}(A,\tau,\alpha) &= U_A(D_{A1} + \mathcal{S}_{\tau}[D_{A2}])V_A^T\\ D_{A1} &= \mathsf{diag}(\sigma_1(A),\ldots,\sigma_{\alpha}(A),0,\ldots,0)\\ D_{A2} &= \mathsf{diag}(0,\ldots,0,\sigma_{\alpha+1}(A),\ldots,\sigma_N(A))\\ \mathcal{S}_{\tau}[x] &= \mathsf{sign}(x)\max(|x| - \tau,0) \end{aligned}$$

ADMM Implementation III

Z update:

$$Z_{k+1} = \operatorname*{arg\,min}_{Z_k} \mathcal{L}_{\mu}(X_k, Z_k, \Lambda_k) = \operatorname*{arg\,min}_{Z_k} \frac{1}{2} \|Z_k \Pi^{-1/2}\|_F^2 + \frac{\mu}{2} \|Y - X_k - Z_k + \frac{1}{\mu} \Lambda_k\|_F^2$$
$$= [\mu(Y - X_k) + \Lambda_k] (\Pi^{-1} + \mu I)^{-1}$$

 Π update:

$$\begin{aligned} \Pi_{k+1} &= \operatorname*{arg\,min}_{\Pi_k} \frac{1}{2} \| Z \Pi_k^{-1/2} \|_F^2 + \frac{D}{2} \log |\Pi_k| = \operatorname*{arg\,min}_{\Pi_k} \frac{1}{2} \operatorname{tr} (Z^T Z \Pi_k^{-1}) + \frac{D}{2} \log |\Pi_k| \\ \implies \nabla_{\Pi_k} f(\Pi_k) = \frac{-1}{2} (Z^T Z \odot \Pi_k^{-2}) + \frac{D}{2} \Pi_k^{-1} \\ \implies \Pi_{k+1} = \frac{1}{D} Z^T Z \odot I = \frac{1}{D} (Y - X)^T (Y - X) \odot I \end{aligned}$$

M WN2023 Quals

HPCA Convergence

From [7], convergence is shown under the following ADMM framework

$$\min_{x,y} f(x) + g(y) \text{ s.t. } Ax + b = y$$

W.L.O.G., HPCA =
$$\arg\min_{X,Z} \underbrace{\lambda_r \|X\|_{\circledast,\alpha}}_{f(X)} + \underbrace{\frac{1}{2} \|Z\Pi^{-1/2}\|_F^2}_{g(Z)} \text{ s.t. } \underbrace{X}_{A=I} + Z = Y$$

1. f(X): proper, lower semi-continuous, semi-algebraic function 2. g(Z): continuous differentiable, semi-algebraic function w/ $L_{\nabla g} > 0$ 3. $\exists \gamma \in \mathbb{R}$ s.t. $A^T A \succeq \gamma I$ 4. $\{X_K, Z_k\}$ sequence generated by ADMM is bounded

1,2,3,4 \implies convergence to KKT point (assuming aug. param. $\mu > 2L_{\nabla g}$)

- Y. Fu, W. Wang, and C. Wang, "Image change detection method based on rpca and low-rank decomposition," in 2016 35th Chinese Control Conference (CCC), IEEE, 2016, pp. 9412–9417.
- [2] R. Otazo, E. Candès, and D. K. Sodickson, "Low-rank plus sparse matrix decomposition for accelerated dynamic mri with separation of background and dynamic components," *Magnetic Resonance in Medicine*, vol. 73, no. 3, pp. 1125–1136, 2015.
- [3] Z. Zhou, X. Li, J. Wright, E. Candes, and Y. Ma, "Stable principal component pursuit," in 2010 IEEE international symposium on information theory, IEEE, 2010, pp. 1518–1522.

References

- [4] N. Vaswani, T. Bouwmans, S. Javed, and P. Narayanamurthy, "Robust subspace learning: Robust pca, robust subspace tracking, and robust subspace recovery," *IEEE Signal Processing Magazine*, vol. 35, no. 4, pp. 32–55, 2018.
- [5] T.-H. Oh, Y.-W. Tai, J.-C. Bazin, H. Kim, and I. S. Kweon, "Partial sum minimization of singular values in robust pca: Algorithm and applications," *IEEE transactions on pattern analysis and machine intelligence*, vol. 38, no. 4, pp. 744–758, 2015.
- [6] T. Tong, C. Ma, and Y. Chi, Accelerating ill-conditioned low-rank matrix estimation via scaled gradient descent, 2020. DOI: 10.48550/ARXIV.2005.08898. [Online]. Available: https://arxiv.org/abs/2005.08898.

References

[7] K. Guo, D. Han, and T.-T. Wu, "Convergence of alternating direction method for minimizing sum of two nonconvex functions with linear constraints," *International Journal of Computer Mathematics*, vol. 94, no. 8, pp. 1653–1669, 2017.