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Abstract

Structural magnetic resonance imaging (sMRI) is com�
monly used for the identification of Alzheimer’s disease
(AD) because it captures atrophy�induced changes in
brain structure. In this work, we utilize sMRI data as
a biomarker to classify patients on the AD spectrum
using modern vision architectures such as variational auto
encoder, vision transformers, MLP�Mixer, and ConvNeXt.
Experimental results show interesting conclusions on fea�
tures learned, self�supervised vs. supervised methods, and
the effects of inductive bias in models for our data.

1. Introduction
Alzheimer’s disease (AD) is a neurodegenerative dis,

ease that gradually worsens and cocurrently achieves
neural damage leading to impairment of cognitive abil,
ity [1]. Once a patient is no longer cognitively normal
(CN), mild cognitive impairment (MCI) is the next pro,
dromal stage of AD. Patients are highly likely to develop
dementia of the Alzheimer’s type (DAT) once diagnosed
with MCI [2]. There are 50 million people affected
worldwide (in 2020) with projections of 150 million by
2050 [3]. Thus, there is a rising need for computer sys,
tems to assist in diagnosis that can learn from multiple
biomarkers. For this work, we investigate the use of
structural magnetic resonance imaging (sMRI) data as a
biomarker for the prediction and diagnosis of AD. We
utilize this image modality since there are structural,
meaning anatomical, changes in the brain due to atro,
phy caused by the disease [4].

Clinical diagnosis of AD consists of patients perform,
ing neuropsychological tests that check for memory
recall and other mental functions. From this test, a cog,
nition score is calculated, and the patient is classified
into one of the three categories. Importantly, clinical
diagnosis is challenging, with sensitivity values ranging
from 70.9% to 87.3% and specificity ranging from 44.3%
to 70.8% [5]. Therefore, there is a possibility that some
of the “ground truth” labels we have are incorrect
due to other potential confounders like chronic stress,

severe depression, and others [6]. In addition, even
though there is an early buildup of plaque in the brain
(leading to MCI symptoms like memory loss), structural
changes like atrophy are observed in later stages of
the AD spectrum [6]. Meaning, the sMRI features can
potentially overlap between some of the classes, like CN
and MCI. In summary, AD classification using sMRI data
is a challenging problem due to the confounders and
reliability of “ground truth” labels. In the next section,
we explore published, related work in the domain of
computer vision for AD diagnosis.

2. Related Work
AD classification and machine learning have a rich

history, starting with more classical methods such as
support vector machines (SVMs) [7] and AdaBoost [8].
With the prevalence of deep learning architectures, re,
searchers have explored more recent alternatives such
as ResNet [9], 2D slice,based vision transformers [10],
and convolutional auto encoders [11]. Since 3D data is
computationally expensive, some have explored using
derived features of the scans, such as functional and
structural connectivity maps (2D data), within a deep
learning setting [12].

However, with the recent advances in architectural
modeling such as ConvNeXt and MLP,Mixer, there
is an opportunity to explore how these methods com,
pare against other established techniques. Moreover,
we directly compare the self,supervised VAE against
supervised models to learn what advantages exist when
incorporating label information into the classification
system as opposed to learning a latent space that repre,
sents a person’s brain. Further, we are interested to see if
more general models (with fewer inductive biases such
as MLP,Mixer/ViT) are able to achieve better classifica,
tion or if we are data limited with our dataset size.

3. Data
We utilized the Alzheimer’s Disease Neuroimaging

Initiative (ADNI) dataset [13] for this work. Specifically,
we select 3T T1 weighted sMRI scans pulse sequenced
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with MPRAGE or FGSPR. Note that in ADNI Phase 2/
GO the MCI class was subdivided into early MCI (EMCI)
and late MCI (LMCI). We discard this data for our clas,
sification results unless otherwise stated.

Class
total (train/test)

Subjects Sessions
CN 711 (568/143) 711 (568/143)

EMCI 326 (260/66) 1814 (1414/401)
MCI 388 (310/78) 928 (760/168)

LMCI 177 (141/36) 933 (743/190)
DAT 276 (220/56) 756 (612/144)

Table 1: Data distribution for ADNI dataset.

Since medical datasets tend to be smaller for positive
classes, we first augment our dataset by treating each
session as a “psuedo,subject” for nonhealthy patients.
We ensure no contamination between the training set
and testing set by keeping each subject’s scans in either
one or the other. This leads to a very balanced distrib,
ution for the 2,class and 3,class classification setups.
Then, we convert the raw DICOM files to the established
BIDS format [14] for all subjects. Finally, we utilize
fmriprep [15] to perform the following preprocessing
tasks standard in the medical literature:
• N4 bias field correction (brightness uniformity)
• Volume merging (multiple scans for one session)
• Skull stripping (isolating the brain)
• Spatial normalization (image registration)

‣ MNI152 linear template with 1mm resolution

We utilize the TorchIO [16] Python library for
data loading and augmentation. Our general pytorch
pipeline includes the following operations:
• Fix data to the canonical orientation
• Resample to 2mm spatial resolution
• Pad the volumes to (96,108,96) for patch,friendly data
• Normalize intensity values to (,1,1)
• We augment by uniformly picking one of:

‣ Random affine transformation
‣ Random patient motion artifact
‣ Random noise

4. Methods

4.1. 𝛽-VAE

Figure 1: Figure adapted from [17].

In machine learning, self,supervised learning marks
a significant shift from supervised approaches. 𝛽,VAE

emphasizes learning disentangled latent representa,
tions of the data, where the hyperparameter 𝛽 encour,
ages independent latent variables. The data itself is used
to supervise the learning process without labels. This
is similar to a kind of “nonlinear PCA” approach with
learnable parameters to compress the data to a lower
dimensional space.

Supervised methods often require extensive labeled
datasets and may struggle to generalize beyond their
training scenarios due to their reliance on direct super,
vision. In contrast, 𝛽,VAE aims to uncover the under,
lying causal factors of the data it observes, promoting a
form of generalization that is not tied to specific super,
vised tasks but is rather aimed at a broader understand,
ing of the data’s structure. Because of this, we utilize
this model to compare against supervised approaches in
our possibly size constrained classification problem.

4.2. ConvNeXt

Figure 2: ConvNeXt block design figure taken from [18].

ConvNeXt [18] is a recent convolutional network
that updates the ResNet architecture [19] by reintroduc,
ing modern ideas first seen in the ViT architecture [20].
A few key ideas for the micro block design are: 1) replac,
ing batch normalization with layer normalization [21]
which is great to reliably sample statistics, especially
when batch size is small, 2) replacing Rectified Linear
Unit (RELU) activation function with Gaussian Error
Linear Unit (GELU) function [22] which adds smooth,
ness around zero, making it easier for backpropogation,
3) changing convolution parameters and where they
take place in the block design, and 4) introducing an in,
verted bottleneck MLP after the convolution operation
in a similar fashion to ViT. By doing this, and changing
some macro level design, they are able to achieve com,
petitive performance compared to SOTA models.

We utilize this architecture to establish a baseline
and observe whether the CNN inductive bias is helpful
for our smaller dataset. Since this is designed for 2D
images, we generalize the model by inflating the layers.
Meaning, we learn 7x7x7 kernels instead of 7x7 kernels.
This is justifiable since we have an extra spatial dimen,
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sion in contrast to video, where temporal data is more
redundant.

4.3. MLP-Mixer

Figure 3: Figure taken from [23].

MLP,Mixer [23] is a novel architecture for vision
that diverges from traditional models by exclusively
using multi,layer perceptrons (MLPs) instead of convo,
lution or self,attention mechanisms. Key design choices
include: 1) employing two types of MLP layers that
mix features across tokens (image patches) and chan,
nels, which allows the model to interact with different
aspects of the input data without spatial convolutions
or attention, 2) using simple matrix multiplication,
which simplifies the computational requirements and
makes the architecture scalable, and 3) leveraging layer
normalization and Gaussian Error Linear Unit (GELU)
activations to maintain training stability and smooth,
ness around zero.

For our 3D data, we had to redesign the patch em,
bedding process to include the extra dimension, trans,
forming it into a cube extraction process. This change
allows the architecture to capture spatial relationships
not only in height and width but also across depth while
maintaining its original premise of using MLPs for both
channel and spatial mixing.

4.4. Vision Transformer (ViT)

Figure 4: Figure taken from [20].

Vision Transformer (ViT) [20] is an image classifi,
cation model designed to replicate the success of trans,
former models in natural language processing (NLP)
tasks. The ViT model first divides the input image into
patches. Tokens are formed by unrolling each image

patch into a vector. Positional encoding is then added to
each token describing the location from which the patch
originates in the image. After that, the tokens are then
sent into transformer layers, as depicted in Figure  4.
The transformer layer contains a multi,head self,atten,
tion mechanism and an MLP block. Classification is
performed by utilizing the class token that is appended
to the token matrix.

Just like with MLP,Mixer, we created a 3D patch
embedding block to create tokens from patches. Addi,
tionally, we generalized the 1D positional encoding
formula (made for language) from [24] to the 3D setting
instead of the learnable positional encoding used in [20].

5. Experiments

5.1. Setup
We use the Adam optimizer [25] for all of our models

without weight decay. We did not experience overfitting
since we only used small complexity models (~30,40M),
as larger models did not improve classification accuracy.
For the cost function, we use weighted cross entropy
loss for the supervised models. The weights are set by
the inverse frequency of occurance for each class in
order to combat class imbalance, although our data is
mostly balanced for the vast majority of experiments.
For the VAE model, the loss function is a combina,
tion of the mean square error between input/output
volumes and the Kullback–Leibler divergence term that
promotes a standard distribution for the latent variables.
We use a learning rate of 10−5 for all models, as this
results in ideal performance for each model. Generally,
each model was trained using a different number of
epochs. Some models required more epochs than others
to achieve convergence using classification accuracy as
the validation metric. For the VAE model, PSNR was
used as the validation metric during training.

5.2. Results
In Table 2, we list results on the binary classification

problem (CN/DAT). Note that due to the quadratic com,
plexity of the transformer model, ViT is fixed to a patch
size of 8x8x8 which is part of the reason why ViT per,
forms worse than other models. Due to time limitations,
we did not explore linear computation methods such
as ProbSparse Self,Attention from Informer [26]. More,
over, since ViT has less inductive bias, this also leads
to worse results given the limited dataset size. MLP,
Mixer (p=3) generally performed well, even slightly
better than ConvNeXt. This result is surprising since we
expected CNNs to perform better under this limited data
regime. We believe this is due to ConvNext kernel sizes
being tweaked for natural images in the original paper
(from ImageNet, for example) instead of our medical
application. Possibly, with further tweaking, ConvNeXt
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would perform equally well. In Table 3, we extend our
results to the multi,class setting (CN/MCI/DAT).

Model
Precision Recall

Accuracy
CN DAT CN DAT

ConvNeXt 0.79 0.85 0.83 0.81 0.82

ViT (p=8) 0.79 0.76 0.69 0.84 0.77

MLP,Mixer
(p=3) 0.87 0.82 0.76 0.90 0.84

VAE 0.67 0.80 0.80 0.66 0.73

Table 2: Binary classification (CN/DAT) results.

Model
Precision Recall

Acc.
CN MCI DAT CN MCI DAT

Conv
NeXt 0.52 0.53 0.67 0.69 0.44 0.61 0.57

ViT
(p=8) 0.59 0.42 0.55 0.49 0.37 0.69 0.52

MLP
Mixer
(p=3)

0.73 0.45 0.64 0.68 0.53 0.57 0.59

VAE 0.47 0.45 0.57 0.64 0.40 0.46 0.49

Table 3: Three,class classification results.

Patch Size (CN/AD) Accuracy

2x2x2 0.84

3x3x3 0.84

4x4x4 0.82

6x6x6 0.80

12x12x12 0.73

Table 4: Effects of patch size on MLP,Mixer model.

Figure 5: Confusion matrix for the 3,class classification
problem using ConvNeXt model.

In Table  4, we explore the effects of patch size on
classification performance and observe that small patch
sizes are ideal to learn features relevant to diagnosis.

Not surprisingly, as seen in Figure 5, there is a large
overlap between CN and MCI, indicating similar fea,
tures, which makes sense since structural atrophy,based
changes occur later in AD subjects. Additionally, some
MCI subjects might be impaired due to confounders
such as chronic stress and severe depression.

Figure 6: Saliency map generation of DAT subject using
Grad,CAM [27] method.

In Figure 6, we generate a saliency map for a DAT
subject with the ConvNeXt model to see what features
the model learned are relevant for diagnosis. As illus,
trated, the model pays close attention to the temporal
lobe (top/bottom sides in red), a region known for long,
term memory recall and language. Moreover, the model
also looks at the ventricles (the center of the brain in
orange), an area that is known to be enlarged in DAT
subjects.

We performed some additional experiments and
summarize our results below.

Ablation/Data Studies (ConvNeXt only):
• Increasing model complexity from ~30M to ~80M re,

sulted in no accuracy change.
• Increasing spatial resolution from 2mm (~1003) to

1mm (~2003) resulted in no accuracy change.
• Incorporating transfer learning using 11,class 3D

CT organ classification (MedMNIST [28]) resulted in
faster convergence but no increase in accuracy.

• Applying label smoothing to treat EMCI/LMCI
classes with labels [0.5, 0.5, 0] and [0, 0.5, 0.5] for
(CN,MCI,DAT) classes resulted in a 3% accuracy de,
crease for the 3,class validation set.

6. Conclusion
In conclusion, AD classification using sMRI data is a

challenging problem due to the confounders and relia,
bility of “ground truth” labels. Besides scaling up our
dataset with more samples, given these issues, it would
be interesting to explore the addition of other potential
biomarkers (such as functional MRI [29]) into the classi,
fication system to further improve accuracy. In addition,
exploring the “learning with noisy labels” research field
[30] would be highly applicable to our setting. Some
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have worked on modifying the CE loss to be more robust
against this effect [31], and not using clean labels at all
during training [32], to provide a few examples.
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