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1 Introduction

Although this paper mainly focuses on X-ray computed tomography (CT) scans, there is additional

information in the broken ray radon chapter (chapter 8) on current research topics involving other

forms of tomography scans. The chapter thereafter (chapter 9) focuses on localized tomography

which is also a hot topic in modern research.

Why X-ray? Why not infrared or visible light? The problem lies in the balance of contrast and

safety. Due to physical nature of high frequency photons, photons pass through the material

without difficulty. One downside of X-ray (high frequency) is the radiation patients receive when

undergoing scanning even though the resolution is high. In comparison, ultrasound is a safe imaging

technology but will lead to poorer pictures.

Before we can understand what goes on mathematically to reconstruct the image, we must under-

stand the physical workings on one of the beams. When a beam passes through matter, such as the

brain or a bone, some of the X-ray photons are absorbed by the material. How much is determined

based on the electron density of the material itself; something like bone has high Calcium content

so more electrons than Helium. The change in intensity of the photons will determine how well or

how badly the material can absorb the photons. If the human brain was homogeneous in nature,

then we would not be having this discussion on tomography reconstruction since the changes in

intensity from the source to the detector is all we would need. Fortunately for us, the problem is

much more difficult.

1.1 Beer’s law and The Attenuation Function

To create a model that will allow us to reconstruct the image, we will need to make the following

assumptions: 1. All of the X-ray beams are monochromatic. In other words, each photon has the

same energy level E with constant frequency along with the same number of photons passing per

second through the path of the beam denoted as N(x). 2. We assume the beam has zero width

and will not be refracted while inside a patient. It should be noted that, in the real world, these

assumptions will not hold for certain beams but will still provide us with an approximation model

to reconstruct the image. Using this information, the intensity of the beam at x is

I(x) = E ·N(x) (1)

Every material will absorb photons differently and the ratio of photons that do pass through is called

the attenuation coefficient of the material. Something like bone has a high attenuation meaning

it absorbs a lot of the photons. We will use this attenuation coefficient symbolized as A(x) to

describe the relationship between the change of intensity and the attenuation of the material. This

is expressed by the differential equation described as Beer’s law shown below

dI

dx
= −A(x) · I(x) (2)

When the X-ray is taken, only the initial and final values of I(x) are known. Using this and solving

the separable differential equation yield the following∫ x1

x0

A(x)dx = ln(
I0
I1

) (3)
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At first sight, this might be a confusing result to understand. What this equation means is that

the X-ray will only give us the integral of A(x) even though we need A(x) to actually reconstruct

the image. The reader might still be left confused on how the beams and the attenuation function

are related so the picture below will be explained.

Figure 1: A “virtual patient” undergoing a CT scan with A(x) displayed.

The gray and white ellipse shapes shown represent a “virtual patient” where the different colors

represent a different attenuation i.e. different materials in the “skull” of a patient. The rays are

set by a specific angle illustrated as θ. The attenuation values across space are graphed as A(t).

Note that the values themselves are integrals since photons are absorbed as they go through the

different materials. We can design the X-ray machine that can measure I0 and I1 so that we can

find the integral of A(x), but we wish to know the value of A(x) for every location. The question

that this chapter poses becomes this, can we figure out A(x) if we only know the average value of

A along the X-ray beam lines that pass through a specific region of the image? (The answer of

course is yes otherwise we would be done here)

The basic premise of CT scanning is the following: If we have enough X-rays that pass through the

patient with different angles and distances all evenly spaced, then we can reconstruct the image.

1.2 Lines, Lines, and More Lines

There are many ways to describe lines in the spatial domain, however, CT scans use polar geometry

to describe the image. Later on, it will be understood why this decision was made to describe lines

using polar instead of Cartesian form. Lines are normally represented as y = m·x+b but are unable

to properly describe vertical lines. Instead, we will use the variable t and θ. T is the distance away

from the origin and θ is the counter clockwise angle from the positive x axis. We know from algebra

that x = t · cos(θ) and y = t · sin(θ). Taking this a step further, we will call a line perpendicular

4



to this t line as lt,θ as this is the actual X-ray that will pass through the body. A representation is

shown below. Further, we discuss the characterization of the line into the t and s parameters.

Figure 2: An X-Ray going through empty space with the t and θ values shown and the parameter-

ization equation of the line.

The first term in the equation in Figure 2 tells a point how much to walk in the x and y directions

from the origin to the line where the intersection occurs. The second term “s” describes how far

along the line to walk. If s=1 then a point at the intersection would walk in the positive s direction

for 1 unit. If we take all real values of s, then we have essentially drawn the entire line in the plane.

Due to polar nature, we can tell that a line t at 30 degrees is the same as line -t at -150 degrees

or line t at 390 degrees. In other words, lt,θ+2π = lt,θ and lt,θ+π = l−t,θ. To restate the important
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discovery of this section that will prove useful in chapter 2:

lt,θ = t· < cos(θ), sin(θ) > +s· < −sin(θ), cos(θ) > (4)

2 The Radon Transform

2.1 Phantom...of the opera?

Before we can simulate X-ray scanning, we must design a purely mathematical symbol known as the

phantom. A phantom is a “virtual patient” that we will use to run through the image reconstruction

process. The problem with using real patient data is we have no idea what it is “supposed” to look

like. How do we know we have successfully created the algorithm? If the image doesn’t look as

expected, is that fault due to the algorithm or a patient slightly moving while collecting data? We

use the phantom as a way to get around the issue to compare the reconstructed image with the

actual image. There exists a famous phantom very commonly used to test the robustness of image

reconstruction algorithms known as the Shepp-Logan phantom. An image of the famous phantom

is shown below. Note: The phantom represents the head of a skull hence the white oval holding

the other objects inside.
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Figure 3: The Shepp-Logan phantom - The standard phantom in the world of image reconstruction.

2.2 A Very Bored Johann Radon

The Radon transform was introduced in 1917 by Johann Radon who also created the inverse Radon

transform which we will discuss later on. As shown below in Definition 1, the lines projected by

lt,θ are integrated. Thus, the Radon transform takes the different values located along the line and

integrates them; this process is repeated for all the other lines. The f function described can be

any two-dimensional function such as the Shepp-Logan phantom shown in Figure 3. Of course,

since the Shepp-Logan function is compactly supported (meaning it doesn’t go on forever), then

the integration variable s only goes from one end of the image to the other end depending on the

line.

Definition 1. For an image defined in R2 for which f describes, let the Radon transform of f be

defined in terms of real values t and θ as

Rf(t, θ) :=

∫ s=∞

s=−∞
f((t cos(θ)− s sin(θ)), t sin(θ) + s cos(θ))ds (5)
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The Radon transform defined above is the mathematical simulation of an X-Ray running through a

phantom. We proceed by taking the line integral value and plotting it in a transformed coordinate

system. Since the parameters are t and θ, we use the t value as the y axis and the θ values as

the x axis. For example, a 256x256 pixel image will require t to be from -91 to 91 pixels from the

origin to completely cover the image. As a result, the radon image has different dimensions than

the original image. The Radon image of the Shepp-Logan phantom is illustrated below.

Figure 4: The Radon image of the Shepp-Logan phantom.

Figure 4 shows the data from 0◦ to 360◦ so that is why there is symmetry in the picture. We really

only need the left or right side of the full image to reconstruct the phantom. Because the lines go

from -t to t, we can transform the negative values of t into positive values with a degree shift of

θ2 = θ1 + 180◦ and thus all of the values are covered. Likewise, from another viewpoint, we only

need the top half or bottom half of the image to completely reconstruct the image.

8



2.3 Properties of the Radon Transform

Given the Radon transform is a linear system, the following properties are as follows:

R(αf + αg) = αRf + αRg (6)

Proposition 1. The function f is defined in the plane, a and b are arbitrary real numbers, and c is a

positive real number. The function g is a translated function of f in the form g(x, y) = f(x−a, y−b)
and the scaled function of f in the form of Rh(t, θ) = (1c ) ·Rf(ct, θ). Then for a real t and θ :

Rg(t, θ) = Rf(t− a cos(θ)− b sin(θ), θ) (7)

Rh(t, θ) = (
1

c
) ·Rf(ct, θ) (8)

For a function f defined in the plane a real angle φ, for a real x and y, function g is a rotated

function f by g(x, y) = f(x cos(φ) + y sin(φ),−x sin(φ) + y cos(φ) then the Radon is:

Rg(t, θ) = Rf(t, θ − φ) (9)

3 Unfiltered Back Projection

With only Rf known, we will need to recover the function f. Let’s select a point in the original

image f that we wish to recover and call it x0 and y0. This point has many radon lines that go

through it, each with different t and θ values. We can define the value of t based on the θ value as:

t = x0 cos(θ) + y0 sin(θ) (10)

The illustration below shows this relationship:

Figure 5: The radon lines of a point P in the function f with respect to origin O.

Definition 2. Using Eq. 9 and using a function h = h(t, θ) whose inputs are polar coordinates

(i.e. the radon function of the image function f), let the back projection of h and the point (x,y)

be defined by:

Bh(x, y) :=
1

π

∫ θ=π

θ=0
h(x cos(θ) + y sin(θ)), θ)dθ (11)
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The reader may be wondering why θ is evaluated from 0 to π and not the complete circle. Remember

that Radon line at say 45 degrees is the same as the line at 225 degrees and thus is completly

unnecessary to go around the whole circle. I’m sure the patient would also appreciate not being

exposed to twice the radiation required as well. The 1
π term is there since we are taking an average

value of all of the lines that go through the point at (x, y). Eg. 9 substitution was made for t within

the h() function to perform what is visually described in Figure 5. Notice that the image function

f is in Cartesian coordinates but the radon function h is in polar coordinates. The back projection

of h goes back to Cartesian as expected since it represents the function f. Back projection, since

it is simply an integration like Radon, also is a linear system. If we were to take Figure 4 (the

Radon image of the Shepp-Logan phantom) and use the back projection formula we would get the

following image:

Figure 6: The unfiltered back projection of the Radon Shepp-Logan phantom.

Note that Figure 6 is the unfiltered back projection. Unfiltered means the Radon image was plugged

into the back projection formula without any modifications. In order to properly reconstruct the
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image, we must perform an operation to the Radon image before we use back projection. This

operation will “fix” the image so that the blurry image will sharpen. If this operation is done, then

we call it the filtered back projection because a filter was applied to the Radon image. To further

demonstrate what back projection does, the image below graphically demonstrates the relationship

between the spatial image, the radon functions, and the back projection image.

Figure 7: The visual representation of the back projection formula.

The three views represent different Radon slices of the original image. All of them appear the same

since the image is only a circle, however the three views have different θ values. Note that the three

views are smeared along the image as shown in section a. If enough views are used, then the image

becomes section b.
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3.1 Missing Data

(a) Point undergoing reconstruction with relevant X-

ray lines.

(b) Corresponding line parameters in Radon domain.

From the figure above, (a) shows a blue point that has not been reconstructed yet. We wish to

get the value at this location and so the green lines correspond to X-rays taken with different t

and θ values during the imaging process. We know that lines in the spatial domain are related

to points in the Radon domain. From the sinogram at (b), the blue points are some of the lines

that go through a point in the spatial domain. The points are arranged in such a way that it

appears “like” a sine wave but not exactly. This interesting result is the reason why the X-ray

image is called a sinogram despite the incorrect shape. Imagine that the phantom went through

the Radon transform with an angle step size of 1. That means there are 180 lines going through

each point in the image (keeping Radon resolution and backprojection resolution the same). All

of those lines will correspond to different angle and t values. The angle values, due to same step

size from Radon to backprojection, are all located perfectly in the sinogram. There will not be any

values in between. There won’t be a 90.5 degree line that goes through a point due to the step size

chosen. Therefore, all of the data exists for the horizontal axis in the sinogram. However, because

there is a step distance between the rays, there may not exist a value for certain locations. Some of

the lines that go through a point in the phantom will not necessarily exist in the sinogram. When

dealing with discrete data, it is always a possibility that the value needed is in between two other

values. This is solved with interpolation.
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Figure 9: Different methods for interpolation.

Interpolation deals with discrete data by fitting a line or curve into the data and taking a value

that lies between known data. From the picture shown above, we can see three important methods

for interpolation: nearest neighbor, linear, and cubic. The yellow and green points are known data

points and the black point in the middle is a value we wish to recover. The nearest neighbor method

works by simply taking the value closest to the known data value. In the special case where the

point lies in between, the higher data point is chosen. The cubic method works by fitting points

along a cubic curve. Notice that there is also a blue and red point in the image. This is due to the

fact that four points are required to completely characterize a cubic function. A line requires two

points to fit, whereas a polynomial of degree two requires three points minimum. A cubic function

will need the four points. The linear method fits a line between two points by finding the slope

and then the y value is found from this. In other words, a weighted average value is gathered from

the data and can be described by:

f(x) = (
f(xx+1)− f(xk)

xk+1 − xk
) · (x− xk) + f(xk) (12)

where x is the value we wish to get that lies between xk and xk+1. It is important to note that

our problem is one dimensional in nature due to missing t-values only. If the angle step size from

the Radon transform and the backprojection algorithm do not match, then there will be angles

for which there is no value in the sinogram. Thus, a 1D problem will turn into a 2D problem and

2D interpolation will be required. The images in the bottom row from the figure above show this

process.
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4 The Fourier Domain

4.1 A Brief Overview

Figure 10: The complete tomography scanning progress.

As seen above, we have an input image that we wish to reconstruct. We feed the image and the

number of angles to perform the line integrals. The more angles leads to a better resolution up

to a certain extent. The radon image is also known as a sinogram due to its sine-looking graph.

However, the radon image does not correlate to the sine function, the image just appears to resemble

a sine function. The sinogram goes through a filtering process to give a filtered sinogram. The

filtered image has the same structure as the unfiltered image: the amplitude values are changed.

The final step is to perform back projection on the filtered sinogram to reconstruct the image.

Afterwards, a simple error algorithm can compare the reconstructed image to the original image

and display the areas that achieved good reconstruction as well as show areas that did poorly in

the reconstruction. This chapter will focus on the filtering block. To filter the sinogram, we must

take the image and transform it to the frequency domain (known as Fourier domain) and perform a

multiplication. Once that is done, the image is converted back to the spatial domain using inverse

Fourier transform. This next section will go through this process.

4.2 Joseph Fourier and His Radical Idea

Definition 3. For an absolutely integrable function f, that is
∫∞
∞ |f(x)|dx < ∞, the Fourier

transform of f is defined by ω such that:

Ff(ω) :=

∫ ∞
−∞

f(x)e−iωxdx (13)

What does this mean? This means that a function with respect to time is converted to a function

with respect to frequency. Imagine an audio signal of a bird chirping mixed with the sound of
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a horn. These sounds have very distinct sounds, but they can’t be seperated when desling with

the time domain. The two seperate signals superimpose each other and add up so it is impossible

to see what signal belongs to the bird and which one belongs to the honk. However, all signals

and functions (with the condition specified in Definition 3) can be decomposed to sine and cosine

components. As long as the signal is compactly supported, meaning it doesn’t go off to infinity,

then we can use Fourier transform. Let the picture below demonstrate this concept.

Figure 11: A time-domain signal and its respective frequency-domain equivalent.

We can see that the time-domain picture consists of the two gray sine waves that superimpose into

the blue sine wave. The middle section shows the separation of the two sine waves. Looking at the

graph from the front we see the normal signal, but as we turn and look at it from the side, we see

the amplitudes of the signal and where they are located on the frequency axis. This specific signal

has a lot of low frequency while only having a little high frequency components. If this was the

car horn and the bird chirping, we can destroy that low frequency value and keep only the high

frequency signal which is the bird chirp. After that, we can take the signal back to the time-domain

effectively removing the car horn from the audio file. This process of messing with the frequency

components is known as filtering. There is a similar process with medical reconstruction. Before

going to the filtering process, I would like to mention the inverse Fourier transform. This transfor-

mation takes a frequency-domain signal and converts it back to the time-domain. It is defined as

follows:

Definition 4. For a frequency-domain function g that is absolutely integrable, the inverse Fourier
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transform is defined for real x as follows:

F−1g(x) :=
1

2π

∫ ∞
ω=−∞

g(ω)eiωxdω (14)

Now that we have defined the transform definitions, it’s time to show the filter process. This is the

highlight of the chapter; the essential piece to properly reconstruct the signal.

4.3 Filters

For reasons that are difficult to explain, the correct filter to reconstruct the image is the absolute

value of the frequency. This filter is shown in the picture below.

Figure 12: A visual representation of the |w| filter .

This specific filter is what we call a high-pass filter. The high frequencies pass through with little

trouble but the frequencies close to zero are de-emphasized since the filter value at that range is

near zero. In image processing, this leads to a sharpening effect in images. The dual is the low-pass

filter that allows low frequencies to pass and high frequencies to be blocked. This leads to a blurring

effect as opposed to a sharpening effect. There are some filters that mix both concepts together and

this is called a band-pass filter. Once the Fourier transform with respect to t is taken, we multiply

the values by absolute omega, and transform it back with respect to t. The reader may seem

confused by what is meant by what is meant by multiplying by the current frequency so that will

be explained here. Once the image values are transformed to frequency values, what determines

the x-domain frequency location of those values? The answer is Nyquist theorem. Sampling is

the reduction of a continuous signal to a discrete signal. Sampling rate is the frequency of how

many samples we take for second. Something like an audio wave is an analog signal but to convert

it to discrete data, for say a digital speaker, requires that we take enough points of the signal to

completely recreate the signal and thus no loss in information. An MP3 file has a sampling rate

of 44,100 Hz so that’s how many points it takes per second. If we have a 100 Hz sine wave then,

per Nyquist theorem, we will need to sample the sine wave at least twice the frequency (200 Hz)
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to convert the continuous function to a discrete function. Likewise, the sinogram also carries a

“sampling rate” but unlike an MP3, it is determined by distance instead of time. Let the sampling

rate be defined as:

Fs = | 2

tn+1 − tn
| (15)

Where tn+1 − tn is the step size (distance) between two parallel rays in sequential order. Per

Nyquist definition explained above, the domain of our signal becomes [−Fs
2 , Fs

2 ] with the number of

points in between these two values matching the number of points of t values. With this said, the

absolute values of these frequency points are multiplied by the amplitude value at that location to

get the filtered sinogram after using inverse Fourier transform. The picture below shows what this

filter process does to the sinogram originally shown in Figure 4.

Figure 13: Filtered sinogram of the Shepp-Logan phantom.
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Applying back projection to the filtered sinogram above yields the following image below. Notice

the change from Figure 6 which shows the unfiltered back projection. Also, compare the image

with Figure 3 which is the original image that we are supposed to get.

Figure 14: Reconstructed image of the Shepp-Logan phantom using |w| filter.

4.4 Noise

After careful inspection of Figure 6 and 12, the reader might notice some lines or dots showing

up where the original image does not. These artifacts are what we call noise. It’s a mathematical

consequence of the tools we are using to generate the image. It is not due to incomplete or partial

data that causes these errors. This is a consequence of the filtering process. Some people spend

their entire careers dealing with post-image processing where they attempt to remove noise from

the images as much as possible. In the next chapter, we will briefly talk about different filter

options to reduce some of that noise.
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5 Filter Design

While the ideal filter option is the absolute omega option from a mathematical point of view,

this specific filter can lead to more noise than others. In the discrete world, this filter is known

as the Ram-Lak filter. When that filter is multiplied by the cosine function then it is called the

hanning window. We can multiply absolute omega by different functions to get different frequency

filtering effects. Some can remove more higher frequencies and some can remove lower frequencies.

Sometimes sharpness is sacrificed for noise reduction and other times noise reduction is sacrificed

for image sharpness. The pictures below show the filter design on the left and the right images are

the reconstructed images.

(a) Ram-Lak Filter
(b) Reconstructed Image

(a) Hanning Filter
(b) Reconstructed Image
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(a) Gaussian Filter
(b) Reconstructed Image

(a) Absolute Exponential Filter
(b) Reconstructed Image

5.1 Error Images

A closer examination is needed since the images look nearly identical to the untrained eye. Zooming

in closer to the images, it becomes easier to see where the differences exist. To further illustrate

this, we will produce what is known as an error image. If we use the original phantom (meaning

not a reconstructed one) as a basis, then we can subtract pixel values between the reconstructed

phantoms from the filters and the pixels of the original phantom. Areas that are black means

there was little difference. In other words, black areas have excellent reconstruction whereas bright

(white) areas means there was a big difference between the reconstructed value and the correct

value. An error image is shown below for filter 1 and filter 5 respectively.
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Figure 19: Error image for Ram-Lak filter.

Figure 20: Error image for absolute exponential filter.
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From the figures, we can see the absolute exponential filter produces an outline that is more white

all around than the Ram-Lak filter. Therefore, it is blurrier or more incorrect in the skull outline

area of the phantom. However, we notice the background black around the the skull is darker than

the black areas of the Ram-Lak filter. This means the noise artifacts that occur around the skull

from the reconstruction are minimized more than in the Ram-Lak filter; the price to pay in this

case is a slightly blurrier image. There are other techniques used besides filter manipulation to

remove noise from images, but this topic remains outside the scope of this paper.

6 The Complete Theorem

Theorem 1. Let a phantom, or any function for that matter, be defined as f on the plane with

real numbers x and y. It follows that the reconstructed function is described as

f(x, y) =
1

2
B
{
F−1[|ω|F (Rf)(ω, θ)]

}
(x, y) (16)

where B is the back projection integral operator and R is the Radon integral operator. The F and

F−1 operators consist of the Fourier and inverse Fourier transform pair.

The function f is feed to the Radon integral where the output variables are changed from x and

y to t and θ. We know that t is defined as a distance perpendicular to the line of integration.

Also, the t line and the positive x axis form an angle θ and this relationship is expressed as

t = x cos(θ) + y sin(θ). Once this transformation is complete, the Radon function is fed to the

1D Fourier transform integral such that the variable of integration is with respect to t. The new

frequency function is multiplied by absolute ω where ω values are defined by the Nyquist theorem.

The filter is chosen so that high frequencies are emphasized and low frequencies are de-emphasized

to create a sharpening effect. Once that is achieved, the inverse 1D Fourier transform is taken

with the variable of integration as the frequency variable ω. At this point, the filtered sinogram is

still in terms of t and θ and interpolation will be required to map polar values to Cartesian values.

Finally, the back projection integral is applied to the filtered sinogram to give the reconstructed

image. If we fully expand the theorem above, we get the following new theorem.

Theorem 2. Let f ∈ R2 such that the reconstructed function is

f(x, y) =
1

(2π)2

∫ π

θ=π

(∫ ∞
ω=−∞

|ω|
(∫ ∞

t=−∞

(∫ ∞
s=−∞

f(t cos(θ)− s sin(θ), t sin(θ) + s cos(θ))ds

)
e−iωtdt

)
eiωtdω

)
dθ

The theorems shown above are under the assumption that the data is continuous. However, when

undergoing a CT scan in the doctor’s office, it is safe to say that there will be discrete packets of

information meaning only finite data exists. The next section discusses this concept to a greater

extent.

6.1 The Discrete World

From the text so far, we have discussed the continuous world where Radon, Fourier, and back

projection are all integrals. However, when dealing with real-world data, the integrals turn to
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summations over finite intervals with discrete increments. Thus, the following definitions are the

discrete counter parts to the equations discussed up to this point.

An X-ray machine cannot take measurements along every line labeled lt,θ. Therefore, there is a

finite number of angles labeled θ between 0 and π for finite values of t since there is spacing between

the rays sent from the machine. If scans are produced at N different angles with an increment of

dθ = π/N then the values of theta are defined as {kπ/N : 0 ≤ k ≤ N − 1}. The spacing between

the rays is defined as τ so that the sample spacing contains 2 ·M + 1 beams at each angle. Then

the value of t are {jτ : −M ≤ j ≤ M}. The values of M and τ will then depend on the specific

construction of the machine itself.

Definition 5. The discrete Radon transform of a discrete function f is defined using the line

parameters described above such that

RDfj,k = Rf(jτ, kπ/N). (17)

Definition 6. The discrete Fourier transform is defined as follows where j is the Fourier coefficient

number, k is the current data point in the summation, N is the number of points that defines an

N-periodic discrete function f.

(FDf)j =
N−1∑
k=0

fke
−i2πkj/N for j = 0, 1, ..., (N - 1). (18)

Definition 7. The discrete inverse Fourier transform is defined as follows where n is the data

point number, k is the current Fourier coefficient in the summation, N is the number of points that

defines an N-periodic discrete function g.

(F−1D g)n =
1

N

N−1∑
k=0

gke
i2πkn/N for n = 0, 1, ..., (N - 1). (19)

Definition 8. The discrete back projection contains discrete theta steps such that θ is replaced by

kπ/N defined from 0 ≤ k ≤ N − 1 and so a discrete function h has the back projection defined as

BDh(x, y) =
1

N

N−1∑
k=0

h(x cos(kπ/N) + y sin(kπ/N), kπ/N). (20)

Of course, the discrete linear interpolation function described in chapter 3 will be useful when

performing the back projection on missing data that lies between two points. Moreover, the Nyquist

theorem sampling rate described in chapter 4 helps us define the domain of the discrete frequency

data. With all of these tools combined, it becomes straightforward to apply these reconstruction

formulas in the discrete world.
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7 A Final Note

24


