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Introduction

Pelvic floor disorders, which include pelvic organ prolapse (POP), affect
nearly 1 in 4 women in the US [7]. Each year more than 300,000 surgical
procedures are performed in the US just for POP alone [8]. Most common
surgical repair procedures of pelvic floor include placement of synthetics
implants such as urethral slings and vaginal meshes. Unfortunately, post-
operative complications of these procedures (e.g. dyspareunia, chronic
pain, extrusion, or recurrent infection) are not rare, and their treatment
may require follow-up surgeries to remove the implants. In these cases,
imaging of the pelvic floor is a vital necessity for surgeons planning the
procedure, seeking to identify the implants, their relative location and dis-
tance from various organs. The process is further complicated by the poor
contrast between the implants and scar tissue, as well as the need for the
surgeons to mentally visualize a 3D volumetric image from 2D projections
generated by standard MRI. This work aims to address some of these
issues and assist surgeons by improving the currently available imaging
techniques. In particular, we study the possibility of using multi-atlas
segmentation (MAS) to automatically segment 2D MR images of pelvic
floor, as well as utilizing such segmentations to create 3D semi-transparent
volumetric images that can be rotated and zoomed with a mouse on the
computer screen.

Fig. 1: Illustration of SC mesh (cyan arrow) shown relative to pelvic floor (from [6]).

In the illustration shown above, we can see an example of a mesh placed
from sacral promontory to vaginal apex in order to correct vaginal apex
or uterocervical prolapse. In the figure below, we can see a sagittal MRI
slice with the SC mesh shown from Fig. 1 near the cyan arrow along with
important pelvic organs. As one can detect, it is difficult to see the full
SC mesh from one sagittal slice. Typically, the doctors will analyze all of
the axial, coronal, and sagittal slices to form a mental picture of how the
mesh is located and oriented in the body to plan for removal.

This research aims at providing surgeons and radiologists 3D visualiza-
tion tools for pelvic floor organs and synthetic implants. Thus, this does
not only provide a second opinion regarding mesh/sling placement and
orientation but assists in easier surgical planning coordination between
radiologists and surgeons.

Fig. 2: Manually segmented, sagittal MRI slice

with SC mesh (cyan) shown along with vagina

(red), bladder (green), bowel (yellow), and

pubic bone (white).

Fig. 3: A closeup of the SC mesh near the cyan

arrow without any outlines blocking the view.

Multi-Atlas Segmentation (MAS)

MAS consists of three parts known as image registration, label propa-
gation, and label fusion [5]. In image registration, we use optimization
theory to find a transformation between labeled MRI slices from the pa-
tient data set and the unlabeled MRI slices from a new patient. In the
figures below, we see an example of image registration using a deformable
model known as Symmetric Normalization (SyN) [4] implemented using
open source software“Advanced Normalization Tools (ANTs)” [3]. More-
over, ANTs is used for the label propagation and label fusion processes
as well. Notice how features, such as the bladder, from Fig. 4 have been
stretched in Fig. 8 to match the features in Fig. 6.

Fig. 4: MR image in the axial orientation

from the manually segmented data set.

Fig. 5: Manually segmented labels from Fig. 4

MRI slice.

Fig. 6: MR image in the axial orientation

from a new patient.

Fig. 7: Automatically segmented labels from

Fig. 6 MRI slice using image registration.

“Truth” data shown in magenta for

comparison.

Fig. 8: Transformed Fig. 4 image using the

SyN deformable model to closely match Fig. 6

image.

Fig. 9: Propagated labels from Fig. 5 MRI

slice using the found transformation.

Once this is done, we can propagate the labels from the transformed
known data from many patients onto the new patient. In Fig. 10, one
can see multiple labels per organ propagated to this previously unlabeled
slice. There is variability between labels since no two patients are exactly
the same. Patients can be taller or shorter, overweight or underweight,
and rotated differently in MRI machines thus leading to different location
and size of pelvic organs. The image registration process reduces the
variability between patients by minimizing the differences between the
two images under a transformation model.

Finally, the image fusion process will merge all of the labels into only one
label per organ. A simple way to do this, for example, is to accept loca-
tions where there is 80% agreement among labels and reject elsewhere;
this is known as Majority Voting (MV). In this case, we are using Joint
Label Fusion (JLF) [9] to handle this process. The advantage of JLF
over MV is that not only we look at correlation among labels but the
unlabeled image itself is used as well to guide the fusion process. Thus,
edge information from the unlabeled image can help fix abnormalities
among label information. In Fig. 11, one can notice the results of per-
forming label fusion from Fig. 10. Once this is done on multiple slices,
we can use 3D visualization software as shown in Fig. 12 below to assist
radiologists and surgeons in surgical planning.

Fig. 10: Propagated labels on unlabeled slice from Fig. 6.

Fig. 11: Final result after fusion process to get one label per organ.

3D Visualization

Fig. 12: 3D visualization of pelvic floor created from labeled sagittal data.

In the figure above, “3D Slicer (Slicer)” [1] is used as visualization
software to display 3D models of important pelvic organs. After labeling
image features in multiple slices for a specific orientation, Slicer uses
contour interpolation techniques in order to create a volume from the
2D outlines. This allows to make all voxels other than labeled ones
transparent. Moreover, the doctor can use the software to rotate and
zoom the 3D semi-transparent, volumetric image.

Alternative Approaches

MAS techniques have been used to process pelvic floor MRI in [2]. The
authors of that study used different implementation of MAS steps, e.g.
LOP-STAPLE algorithm instead of JLF for the fusion process. The
method was then applied to a manually segmented data set of MR
images in axial view from 18 patients and tested on one new patient.
The robustness of their technique, if applied to a more generic data set,
is not clear. One of the goals of our study is to create a MAS technique
that can be robustly used to automatically segment the pelvic floor
structures and synthetic implants on MR images of all 3 orientations.

Applying the MAS methodology is only one approach to automatically
segment pelvic floor organs and synthetic implants. Another possible
technique is the application of neural networks to perform the same
tasks. With manually labeled data, one can train a neural network
to recognize these important features in an arbitrary MRI slice. Our
research group is currently working on this alternative approach as well.
Moreover, we are open to ideas and suggestions to improve our work.

Challenges & Future Work

The results illustrated in this poster only include the segmentation
of important pelvic floor organs. We have not addressed automatic
segmentation of synthetic implants and this topic remains open for
future research. Moreover, the propagated labels on Fig. 10 are labels
from the same patient. Taking one slice as the fixed slice, one can use
the closest 4 adjacent slices to set up a toy problem. In other words,
the labels on Fig. 10 correspond to variations of pelvic floor organs
within the same patient. The reason this was done was due to large
variability between inter-patient labels. Due to the small data set of
patients, this large variability can be troublesome so intra-patient labels
were utilized. Similarly, deep learning approaches require large amount
of training data. Therefore, a small data set prevents further study of
automatic segmentation of pelvic floor organs. Since a small data set
is a bottleneck for our research, we are currently investigating methods
of data augmentation to create synthetic data from the limited patient
data. We are open to ideas and suggestions to improve our work.
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